Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 44 Issue 3
Jul.  2020
Article Contents
Turn off MathJax

Citation:

Design of multi-spectral data synchronous acquisition and processing system based on NUFFT

  • Received Date: 2019-05-14
    Accepted Date: 2019-08-28
  • In order to simultaneously acquire multi-spectral spectral information and multi-test data synchronization processing, a synchronous acquisition and processing system based on field-programmable gate array(FPGA)+digital signal processor(DSP) was designed. The non-uniform fast Fourier transform (NUFFT) algorithm was used to sample the spectral segments containing the target information, and the theoretical analysis and experimental verification for the non-uniform sampling of multi-spectral data were carried out. The experiments were respectively carried out simultaneously for three different laser wavelengths of 632nm, 880nm, and 980nm. The system was compared with the traditional spectral analysis algorithm. The test results show that the signal-to-noise ratio of the system at the peak position of three wavelengths is 31.6dBm, 36.3dBm, and 32.5dBm, respectively, while the signal-to-noise ratio of the traditional spectrometer is only 20.1dBm, 25.4dBm, and 23.7dBm. It can be seen that the hardware design of the system and the NUFFT algorithm can effectively enhance the signal-to-noise ratio in the process of acquiring multi-spectral spectral information. At the same time, the processing speed of the system is also faster, and it has certain application value in multi-spectral fast processing.
  • 加载中
  • [1]

    LI X, ZHANG J L, TIAN E M. Passive laser spectrum detection technology based on static interferometer[J].Proceedings of the SPIE, 2008, 7160: 71601I.
    [2]

    MILES A J, WIEN F, LEES J G, et al. Calibration and standardization of synchrotron radiation and conventional circular dichroism spectrometers[J]. Spectroscopy, 2003, 17(4): 653-661.
    [3]

    DAI J, TANG X Ch, GAO Zh F, et al. Design and implementation of an infrared pmage processing system under sea and sky background[J]. Infrared Technology, 2016, 38(2): 121-125(in Chinese).
    [4]

    WANG W, LU Y H, LU F, et al. Design of moving mirror control system of Fourier transform infrared spectrometer based on DSP[J]. Chinese Journal of Quantum Electronics, 2015, 32(1): 8-16(in Chinese).
    [5]

    BROUW W N. Aperure synthesis[J].Methods in Computational Physics, 1975, 14(1): 131-175.
    [6]

    DUTT A, ROKHLIN V. Fast Fourier transforms for nonequispaced data[J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1368-1393. doi: 10.1137/0914081
    [7]

    ROSSI A, DIANI M, CORSINI G. Bilateral filter-based adaptive non-uniformity correction for infrared focal-plane array systems[J]. Optical Engineering, 2010, 49(5): 057003. doi: 10.1117/1.3425660
    [8]

    LI Ch, WAN X X, XIE W, et al. Color filter design method for multi-channel spectral acquisition system[J]. Journal of Applied Optics, 2016, 37(5): 639-643(in Chinese).
    [9]

    ZHANG D L, SHEN X L, SONG Y K, et al. Design and implementation of large FFT convolution on heterogeneous multicore programmable system[J]. Application of Electronic Technique, 2017, 43(3): 16-20(in Chinese).
    [10]

    GUO J, LU Q P, GAO H Zh, et al. Design of noninvasive blood constituent spectrum data acquisition system based on FPGA[J]. Spectroscopy and Spectral Analysis, 2016, 36(9):2991-2996(in Chinese).
    [11]

    ZHOU Zh J, ZHANG Y G, FAN B. Design of interference signal double ADC acquisition system based on FPGA[J]. Electronic Measurement Technology, 2016, 12(4): 123-128(in Chinese).
    [12]

    LV M, CHEN Ch, WANG Y D. High-speed optical signal acquisition system for trace gases detection in mid-infrared absorption spectrum[J]. Laser Journal, 2016, 37(2): 26-29(in Chinese).
    [13]

    MEYER-BAESE U. Digital signal processing with field programmable gate arrays[M]. 4rd ed. Beijing: Tsinghua University Press, 2017: 513-523(in Chinese).
    [14]

    LI J S, PARCHATKA U, FISCHER H.A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser[J]. Analytical Methods, 2014, 6(15): 5483-5488. doi: 10.1039/C3AY41964A
    [15]

    WANG K, WANG H Q, YING Y, et al. Reproduction and evaluation of mural color based on spectral reconstruction technology[J]. Laser Technology, 2019, 43(2): 280-285(in Chinese).
    [16]

    XUE Y B, LI H. Cross-correlation arithmetic algorithm in the application of micro sensors[J].Electronic Design Engineering, 2015, 23(1): 93-95(in Chinese).
    [17]

    DU Y. Digital filter implement based on MATLAB and FPGA[M]. Beijing: Electronics Industry Press, 2016: 220-252(in Chinese).
    [18]

    XIAN Y L. Digital filter design and high-speed data transmission based on FPGA[D]. Xi'an: Xidian University of Electronic Technology, 2009: 13-24(in Chinese).
    [19]

    WANG J, AN J P. An improving tracking speed method in the early-late gate synchronizer[J].Journal of Circuits and System, 2005, 10(6): 111-114(in Chinese).
    [20]

    ZHU L K, JIA F X, LI X L. Design of parallel high-speed FFT algorithm based on laser seeker signal[J]. Laser Technology, 2018, 42(1): 89-93(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8) / Tables(1)

Article views(6770) PDF downloads(22) Cited by()

Proportional views

Design of multi-spectral data synchronous acquisition and processing system based on NUFFT

  • College of Information Technology, Changchun Vocational Institute of Technology, Changchun 130000, China

Abstract: In order to simultaneously acquire multi-spectral spectral information and multi-test data synchronization processing, a synchronous acquisition and processing system based on field-programmable gate array(FPGA)+digital signal processor(DSP) was designed. The non-uniform fast Fourier transform (NUFFT) algorithm was used to sample the spectral segments containing the target information, and the theoretical analysis and experimental verification for the non-uniform sampling of multi-spectral data were carried out. The experiments were respectively carried out simultaneously for three different laser wavelengths of 632nm, 880nm, and 980nm. The system was compared with the traditional spectral analysis algorithm. The test results show that the signal-to-noise ratio of the system at the peak position of three wavelengths is 31.6dBm, 36.3dBm, and 32.5dBm, respectively, while the signal-to-noise ratio of the traditional spectrometer is only 20.1dBm, 25.4dBm, and 23.7dBm. It can be seen that the hardware design of the system and the NUFFT algorithm can effectively enhance the signal-to-noise ratio in the process of acquiring multi-spectral spectral information. At the same time, the processing speed of the system is also faster, and it has certain application value in multi-spectral fast processing.

引言
  • 光谱仪是用于光谱分析的重要测试设备,其中,傅里叶变换光谱仪由于能够同时对多波段光谱进行测试而被广泛应用[1]。在傅里叶变换光谱仪中,最常见的处理方式是对干涉条纹进行快速傅里叶变换(fast Fourier transform, FFT)[2-4],再光谱复原最终获得待测光的光谱信息。这个过程中需要对干涉条纹进行均匀采样,同时,针对多光谱的同时获取也需要均匀采样。这样就存在一定的弊端,因为对于某些光程调制具有非线性,采用均匀采样会造成误差。

    国内外对非均匀FFT算法的研究一直很关注,非均匀FFT算法最早是由BROUW在1975年提出的,当时主要用于解决非均匀频域采样形成直角坐标网格的问题[5]。1993年,DUTT首次将非均匀插值技术应用于离散傅里叶变换(discrete Fourier transform, DFT)算法从而形成了非均匀离散傅里叶变换(non-uniform discrete Fourier transform, NUDFT)算法,由此实现了对加权复指数函数的近似表达[6]。2010年,ROSSI等人通过奇异值分解的方式对非均匀FFT算法进行了二次划分,提高了数据反演的稳定性[7]。2012年,LI等人将自回归模型算法引入光谱复原,并与传统FFT算法比较,获得了更高的光谱分辨率[8]。2016年,南京理工大学学者提出了一种矩阵反演算法,并通过非均匀采样的形式完成了对光谱数据的复原[9]

    对于多光谱获取而言,不同波段需要的采样密度也是由实际需求所决定的,采用传统的FFT只能有一个均匀的采样率,采集过密会导致数据量大,影响实时性,采集过稀则导致部分光谱波段反演精度下降。为了克服此问题,本文中提出了将非均匀FFT算法引入多光谱数据复原的计算中,提高系统针对多光谱谱段实时采集与处理的能力。系统利用非均匀快速傅里叶变换(non-uniform fast Fourier transform, NUFFT)算法[10-12]对具有目标特征波段进行分类采样,从而在保证采样精度的条件下提高系统工作速率。

1.   总体系统架构
  • 多光谱数据同步采集与处理系统如图 1所示。系统由光学接收与干涉模块、光电探测器、模数转换器(analog-to-digital converter, ADC)、现场可编程门阵列(field-programmable gate array, FPGA)控制模块、数据信号处理器(digital signal processor, DSP)模块及显示单元构成。

    Figure 1.  Multispectral data synchronous acquisition and processing system

    首先,光学接收完成对入射光的整形与准直,干涉模块完成对入射光的相干处理,从而形成干涉条纹。然后,干涉条纹由电荷耦合器件(charge coupled device, CCD)采集,进入FPGA数据存储单元。FPGA控制模块完成对多光谱数据的同步匹配,其与DSP数据处理模块进行数据交互。DSP数据处理模块完成NUFFT算法对多光谱谱段进行分段采样提取,并将处理数据传输给显示单元。显示单元的输出速率与数据量由FPGA控制[13-18]。因为多光谱数据量大,需要同时控制数据时序逻辑顺序与完成相应的运算需要较高得数据处理能力,所以在本系统中,多光谱数据的控制由FPGA实现,NUFFT算法由DSP实现,从而形成FPGA+DSP架构。通过FPGA和DSP的联用,可以更大地发挥不同数字处理芯片对数据的处理能效,从而提高系统的整体工作效率。系统采用FPGA+DSP架构,通过FPGA完成ADC数据转换与采集,再由DSP的外部存储器接口(external memory interface, EMIF)完成导入,最终,在DSP中通过NUFFT算法对多光谱数据进行反演。

2.   系统设计
  • 为了实现多光谱数据同步快速处理的功能,设计了利用FPGA完成同步控制,利用DSP完成NUFFT数据处理的FPGA+DSP混合架构,该架构的组成如图 2所示。

    Figure 2.  Data processing module based on FPGA+DSP hybrid architecture

    系统核心处理部分由FPGA+DSP组成,ADC采集得到的光谱数据通过FPGA的先入先出接口(first input first output,FIFO)采集进入同步动态随机存取内存(synchronous dynamic random-access memory, SDRAM)、双倍速率(double data rate, DDR)、闪存(flash memory, FLASH), 其中, WFIFO表示写入接口; RFIFO表示读出接口。再通过同步时钟的读FIFO进入DSP,由DSP完成光谱数据反演的数据处理。因为采集获得的光谱数据为浮点型数据,所以选用了TMS320C6748型DSP。该款DSP主频456MHz,是一款高性能浮点型信息处理器,包括8组32位并行处理单元,非常适合多光谱数据高速并行处理。其主控芯片采用哈佛结构,支持单周期多指令功能,并且其包括了丰富的外设,如外EMIF、通用型之输入输出(general-purpose input/output, GPIO)、通用定时器、主机并行接口(host port interface, HPI)等。

  • 由于多光谱数据中的中心波长位置及干涉条纹周期均不同,而经典FFT算法[19-20]只能对等间隔采样数据进行处理,所以采用NUFFT实现非均匀采样, 可减小由于输入数据插值造成的误差,并且可大幅缩短系统运算时间。非均匀干涉数据反演也可以理解成采用一组均匀傅里叶变换系数组合做近似的方式实现。寻求xk-q/2(k=0, …, q)满足:

    式中,m≥2,ω=exp[-i2π/(mN)],[mc]为与mc最接近的整数,c为采样点采集得到的数值,q为正偶数,v为非均匀采样点,Sj(j=-N/2, -N/2+1, …, N/2-1)为窗函数。在本系统中,针对多光谱数据进行采集与分析,数据在频域中表现为具有紧支撑性。故采用高斯窗函数,有:

    式中,b为常数参量,μ为窗函数调节参量,μ∈(0, 1),将(1)式以矩阵形式表达:

    式中,A为等效(1)式的相应矩阵,x(c)为干涉信号数据,ν(c)为干涉条纹数据矩阵。由于(1)式是超定方程组,不存在精确解,所以采用最小二乘法计算,获得x(c)的最小二乘解有:

    式中,a(c)=AHν(c),F(m, N, q)=AHA(H代表共轭转置)。由上式推导可知,NUFFT的步骤为:(1)利用(3)式计算每个ωk(第kω,与(1)式中ω为同一变量)的展开系数xj(ωk); (2)计算傅里叶系数$ {\tau _l} = \sum\limits_{j, k, [{m_{\omega k}}] + j = l} {{\alpha _k} \times } \;{x_j}({\omega _k})$; (3)通过FFT计算:$ {T_j} = \sum\limits_{l = - mN/2}^{mN/2 - 1} {{\tau _l}} \exp \left( {\frac{{2{\rm{i \mathit{ π} }}jl}}{{mN}}} \right)$(4)将以上两步的值乘以比例系数,从而近似的非均匀FFT有:$ {{\tilde f}_j} = {T_j}S_j^{ - 1}$。

    根据NUFFT的实现步骤,再结合FPGA控制获取的光谱数据,FPGA通过产生同步驱动时钟对多光谱数据进行同步采集。在模块中设计了只读存储器(read-only memory, ROM)与计数器,ROM用于保存时钟管理芯片对应额匹配码,在上电复位后由计数器完成对时间段的读取,数据处理采用NUFFT算法实现。若CCD获取的N点干涉信号是x(t),x′(t)是x(t)被插值以后的新数据组,f(c)是核函数, t表示时间,则对光谱反演的算法流程如图 3所示。

    Figure 3.  Flow chart of NUFFT algorithm

3.   仿真分析
  • FPGA控制AD7492完车对干涉条纹数据进行采集,在CONVST(AD7492芯片上的转换开始控制端)信号下降沿时转换,BUSY(AD7492芯片上的忙信号输出端)信号置高,再通过CS(chip select,AD7492芯片上的片选引脚)和RD(读取)信号完成AD数据的输出。系统通过CONVST的下降沿信号触发转换,转换结束后将数据保存到随机存取存储器(random access memory, RAM)中,然后进行下一个数据的采集。基于Modelsim的仿真结果如图 4所示。

    Figure 4.  Simulation results of high-speed acquisition drive based on AD7492

    FPGA的控制主要是针对“写”信号控制(即引脚SLWR)和FIFO数据信号而言的,令其满足异步读写时序关系,在每个周期内需将SLWR信号翻转一次。数据通过双口RAM读取,读地址随时钟增加自加一,然后在该信号的上升沿和下降沿均进行翻转处理,从而保证异步传输时序逻辑关系,其Modelsim中的仿真结果如图 5所示。

    Figure 5.  FPGA control signal simulation results

    图 4图 5中的仿真分析结果可知,由FPGA控制AD7492完成干涉条纹数据的高速采集以及对数据异步传输实现了控制。

  • 完成时序逻辑控制的干涉条纹数字信号可以通过EMIF接口进入DSP, 然后进行光谱复原的数据处理。在代码调试器(code composer studio, CCS)环境中,632nm激光的干涉条纹与复原光谱的仿真结果如图 6所示。

    Figure 6.  Spectrum recovery operation simulation results

    图 6a图 6b可知,干涉条纹经FPGA采集传输给DSP后,光谱复原由DSP实现,仿真分析过程采用的是单特征波长的复现,当针对多特征波长时,需要引入NUFFT算法。

4.   实验
  • 实验装置由含多特征光谱的宽带光源、干涉模块、TVD3724型CCD、高速ADC采集模块、FPGA+DSP处理模块组成(Virtex-2型FPGA与TMS320C6748型DSP配合)。多特征激光器波长分别为632nm, 880nm和980nm,整体实物如图 7所示。

    Figure 7.  Experimental system physical map

    为了实现多光谱数据同步采集与处理的要求,实验中针对3个激光同时入射形成的混合干涉条纹进行解析处理。基于DSP的光谱处理结果如图 8a所示,针对同一混合光源采集得到的光谱数据采用Advantest公司的Q8344A型光谱仪进行对比,结果如图 8b所示。

    Figure 8.  FPGA+DSP module and spectrometer recurring spectrum comparison

    本系统与光谱仪复现结果对比可知,本系统中由于采用了NUFFT算法,对于不同特征光谱的干涉条纹实施了分区采样与插值,所以复现后的特征光谱分布更清晰,旁瓣抑制效果十分明显,并且中心波长位置处信噪比更大。复现光谱的主要参量对比见表 1

    No. the system spectrometer
    center
    wavelength/nm
    signal-to-
    noise ratio/dBm
    center
    wavelength/nm
    signal-to-
    noise ratio/dBm
    1 632.3 31.6 632.1 20.1
    2 879.6 36.3 879.9 25.4
    3 980.3 32.5 980.1 23.7

    Table 1.  Comparison of main parameters

    通过表 1中光谱复现主要参量可知,两种方式的中心波长准确度相近,光谱仪略优于本系统。而对于信噪比而言,本系统在3个特征波长位置上均明显优于对比用的光谱仪。由此可见,针对多光谱数据进行分段插值,再进行NUFFT处理,可以有效地提高光谱复现的精度。

5.   结论
  • 针对多光谱数据处理时,同步采集与控制和非均匀采样对复现光谱造成的影响进行了深入地分析与研究,并在此基础上设计了干涉条纹数据处理中处理效果与处理速度之间的矛盾问题,设计了一种基于FPGA+DSP的同步采集与处理系统。该系统通过FPGA完成对高速ADC的同步控制,再由EMIF接口将数据导入DSP处理模块,在DSP中利用NUFFT算法将不同特征波长的干涉条纹数据进行分段采样与插值, 通过标准化初始输入信号抑制噪声干扰,通过流水线工作方式提高光谱复原效率, 最后,通过仿真与实验验证了系统的可行性,证明了其在多光谱快速处理方面具有一定的应用价值。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return