Advanced Search
HOU Yanxi, LUO Ziyi, YI Yaoyong, XU Rongzheng, VLADYSLAV Khaskin. Study on weld formation and microstructure of A7N01 aluminum alloy by hybrid laser-MIG welding[J]. LASER TECHNOLOGY, 2020, 44(3): 304-309. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.006
Citation: HOU Yanxi, LUO Ziyi, YI Yaoyong, XU Rongzheng, VLADYSLAV Khaskin. Study on weld formation and microstructure of A7N01 aluminum alloy by hybrid laser-MIG welding[J]. LASER TECHNOLOGY, 2020, 44(3): 304-309. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.006

Study on weld formation and microstructure of A7N01 aluminum alloy by hybrid laser-MIG welding

More Information
  • Received Date: May 19, 2019
  • Revised Date: July 10, 2019
  • Published Date: May 24, 2020
  • In order to study the effect of process parameters on weld formation, microstructure characteristics, and properties of the joint welded by laser-melt inert-gas (MIG) hybrid welding, laser-MIG hybrid welding of 6mm A7N01 aluminum alloy plates was carried out with different laser powers, welding speeds, and groove forms. The microstructure and properties of the joints were observed and tested. The results show that as the laser power increases, the weld penetration increases linearly. Furthermore, the higher the welding speed, the smaller the weld width and the penetration depth, and the margin is slightly increased. The welded joints have good adaptability to different groove forms. When the hybrid laser-MIG welding was carried out with the laser power of 3.0kW, welding speed of 1.0m/min, and the Y-shaped 30° groove, the sound joint was obtained. The average tensile strength of the joint is 271MPa, which is 60% of the base metal. The center hardness of the weld is 85.4HV, which is 78% of the base metal. In the joint, the grain in the heat-affected zone is coarsened, the hardness is reduced, and the grain in the fusion zone is dendritic grain, which is easy to produce hydrogen holes in the process. In addition, the grain is equiaxed at the center of weld. This research is conductive to obtaining a well-formed laser-MIG hybrid welding joint of A7N01 aluminum alloy. In addition, the grain is equiaxed at the center of weld.
  • [1]
    QIAO J N, LU J X, WU S K. Fatigue cracking characteristics of fiber laser-VPTIG hybrid butt welded 7N01P-T4 aluminum alloy[J]. International Journal of Fatigue, 2017, 98: 32-40. DOI: 10.1016/j.ijfatigue.2017.01.008
    [2]
    QIN C, GOU G Q, CHE X L, et al. Effect of composition on tensile properties and fracture toughness of Al-Zn-Mg alloy (A7N01S-T5) used in high speed trains[J]. Materials & Design, 2016, 91: 278-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26bb0b2c5da2e0a87cfd61fe159e7827
    [3]
    WANG Y, ZHANG Zh Y, GUO W, et al. Effects on fatigue properties of A7N01-T5 aluminum alloy welded joints for high-speed train by using different evaluation methods[J]. Electric Welding Machine, 2018, 48(3): 171-175(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dhj201803032
    [4]
    LI B, WU M N, JIN W T, et al. Corrosion behavior of weld joints of aluminum alloy A7N01P-T4 for high-speed trains[J]. Corrosion Science and Protection Technology, 2014, 26(3): 223-227(in Chin-ese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fskxyfhjs201403005
    [5]
    CHEN D F, ZHANG T H, ZHANG F D, et al. Corrosion behavior of weld joints of aluminum alloy A7N01P-T4 for high-speed trains[J]. Welding Technology, 2015, 44(3): 74-76(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fskxyfhjs201403005
    [6]
    NI W Y, YANG Sh L, JIA J, et al. Microstructure and performance of A7N01 Al alloy welding joint used in automotive high-strength[J]. Hot Working Technology, 2014, 43(19): 22-25(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201419006
    [7]
    GAO B J, JI H, FAN Y J, et al. Effect of microstructure and mechanical properties of welded joint of 7N01 alloy by pulse MIG welding[J]. Hot Working Technology, 2012, 41(15): 138-140(in Ch-inese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201215045
    [8]
    WANG Y L, CHEN H. Development trend of Al alloy on high speed train[J]. Electric Welding Machine, 2010, 40(10): 9-16(in Ch-inese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhj201010003
    [9]
    MA Zh H, CHEN D G, TAN B, et al. Influence of hybrid CO2 laser-MIG welding process on weld shaping of 5052 aluminum alloy[J]. Ordnance Material Science and Engineering, 2012, 35(2): 76-80(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bqclkxygc201202023
    [10]
    DAN L, MA J, YANG Zh. Research on welding of high strength aluminum alloy[J]. China Metal Bulletin, 2019(1): 241-243(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hndxxb201804006
    [11]
    YANG Z Y. Research status and development direction of high strength aluminum alloy and its advanced welding technologies[J]. Electric Welding Machine, 2018, 48(3): 255-259(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dhj201803050
    [12]
    WANG Q, HUI C, ZHU Z, et al. Mechanical properties of a dissimilar aluminum alloy joint welded by hybrid laser-MIG welding[J]. International Journal of Modern Physics, 2017, 31(16/19):1744037 (in Chinese). http://smartsearch.nstl.gov.cn/paper_detail.html?id=616deef52b89e06c3e08b37d9689f55b
    [13]
    YAN Sh H, NIE Y, ZHU Z T, et al. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al-Mg alloy joints[J]. Applied Surface Science, 2014, 298(15): 12-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=37e3a3f682d9f4020add6297ce17a6ef
    [14]
    KATAYAMA S, KAWAHITO Y, MIZUTANI M. Latest process inperformance and understanding of laser welding[J]. Physics Procedia, 2012, 39: 8-16. DOI: 10.1016/j.phpro.2012.10.008
    [15]
    RONG C, PING J, SHAO X, et al. Effect of magnetic field on crystallographic orientation for stainless steel 316L laser-MIG hybrid welds and its strengthening mechanism on fatigue resistance[J]. International Journal of Fatigue, 2018, 112: 308-317. DOI: 10.1016/j.ijfatigue.2018.03.034
    [16]
    CHEN Y B, MIAO Y G, LI L Q, et al. Joint performance of laser-TIG double-side welded 5A06 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1): 1-31. DOI: 10.1016/S1003-6326(08)60220-4
    [17]
    ZHANG W, YE B, QI X Y, et al. Study on the effect of energy ratio in laser-MIG hybrid welding of 6061 aluminium alloy[J]. Laser Technology, 2018, 42(4): 500-504(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201804013
    [18]
    CAI C, HE S, CHEN H, et al. The influences of Ar-He shielding gas mixture on welding characteristics of fiber laser-MIG hybrid welding of aluminum alloy[J]. Optics and Laser Technology, 2019, 113: 37-45. DOI: 10.1016/j.optlastec.2018.12.011
    [19]
    CHANG Y F, LEI Zh, WANG X Y, et al. Stability of laser-MIG hybrid welding process with filling wire for aluminum alloy[J]. Transactions of The China Welding Institution, 2018, 39(10): 123-127(in Chinese).
    [20]
    WANG H Y, SUN J, LIU L M. Formation and controlling mechanism of pores in laser-TIG hybrid welding of 6061-T6 aluminum alloy sat high peed[J]. Chinese Journal of Lasers, 2018, 45(3): 302001 (in Chinese). DOI: 10.3788/CJL201845.0302001
  • Cited by

    Periodical cited type(1)

    1. 姚红兵,范宁,叶霞,唐旺,李不同,丛嘉伟,朱卫华,周志强. 高能应变率下钛合金靶材层裂模拟研究. 激光与红外. 2019(07): 813-817 .

    Other cited types(3)

Catalog

    Article views (7) PDF downloads (6) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return