Advanced Search
ZHANG Yutong, ZHAO Li, ZHANG Feng. Performance optimization of visible light OFDM communication system based on wavelet transform[J]. LASER TECHNOLOGY, 2020, 44(2): 261-265. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.022
Citation: ZHANG Yutong, ZHAO Li, ZHANG Feng. Performance optimization of visible light OFDM communication system based on wavelet transform[J]. LASER TECHNOLOGY, 2020, 44(2): 261-265. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.022

Performance optimization of visible light OFDM communication system based on wavelet transform

More Information
  • Received Date: April 03, 2019
  • Revised Date: May 19, 2019
  • Published Date: March 24, 2020
  • In visible light communications, multipath effects and channel attenuation in traditional orthogonal frequency division multiplexing (OFDM) systems can generate intersymbol interference and reduce system reliability. In order to guarantee the quality of communication, OFDM system with cyclic prefix was used to resist the symbolic interference caused by multipath effect. In order to reduce bit error rate(BER) and peak-to-average power ratio(PAPR) of the system, Haar wavelet was used to optimize the performance of system parameters such as validity, reliability and PAPR. Monte Carlo method was used to verify the simulation results. The results show that, when bit error rate of the system is 10-4, BER performance of discrete wavelet transform OFDM system is about 5dB higher than that of fast Fourier transform OFDM (FFT-OFDM) system. Communication efficiency has been improved by about 11%. When PAPR of the system is 5dB, complementary cumulative distribution function (CCDF) of FFT-OFDM system is close to 10-2. CCDF value of DWT-OFDM system is 0. This study provides a reference for OFDM communication based on visible light wavelet transform.
  • [1]
    HU W W. PAPR reduction in DCO-OFDM visible light communication systems using optimized odd and even sequences combination[J]. IEEE Photonics Journal, 2019, 11(1):1-16.
    [2]
    CAI S, LI C, WANG W. Design and experiments of an adaptive OFDM system for visible light communication[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(1):137-143. http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb201801019
    [3]
    KE X Zh, KANG Y, LIU J. Experimental research on PAPR reduction algorithms in FSO-OFDM system[J]. Infrared and Laser Engineering, 2017, 46(6):173-179(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201706028
    [4]
    ZHANG T. The key technology research of indoor visible light communications based on OFDM[D]. Changchun: Jilin University, 2016: 88-110(in Chinese).
    [5]
    ZHAO H B, ZHANG D, YANG J K, et al. Application of wavelet layered method for laser Doppler velocimetry signal[J]. Laser Technology, 2019, 43(1):103-108(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201901021
    [6]
    NAN R Z, WEI M X H, RU H W, et al. Imperceptible digital watermarking scheme in multiple transform domains[J]. Multimedia Tools & Applications, 2018, 77(23):30251-30267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1aa2822e66c8639a271d7e1de38ab718
    [7]
    KIM B W. Suboptimal LED selection for distributed MIMO visible light communications[J]. Personal & Ubiquitous Computing, 2018, 22(4):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6469c127f9c735a3571f2d8d0618b035
    [8]
    SUN Z G, YU H Y, TIAN Z J, et al. Linear precoding for MU-MISO VLC systems with noisy channel state information[J]. IEEE Communications Letters, 2018, 22(4):732-735. DOI: 10.1109/LCOMM.2018.2795025
    [9]
    LIU Zh G, ZHAO L, ZHU T, et al. Research of indoor positioning and illuminating systems based on visible light[J]. Laser Technology, 2018, 42(5):646-650(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201805012
    [10]
    DING D Q, KE X Zh. Visible light communication and research on its key techniques[J]. Semiconductor Optoelectronics, 2006, 27(2):114-117(in Chinese).
    [11]
    JIANG X M, ZHU X Y, LIU T, et al. Design and implementation of LED indoor visible light voice communication system[J]. Laser Technology, 2014, 38(6):807-812(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201406018
    [12]
    LIU W, SHANG Q F. 2-D lifting wavelet de-noising method for Rayleigh BOTDA system[J]. Laser Technology, 2018, 42(3):346-350(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201803011
    [13]
    WANG T, SHEN Y H, YAO J Q. Research on laser radar echo signal denoising based on wavelet threshold method[J]. Laser Technology, 2019, 43(1):63-68(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgzz201709035
    [14]
    KE X Zh. Principle and application of orthogonal frequency division multiplexing in wireless optical communication[M]. Beijing: Science Press, 2018:146-153(in Chinese).
    [15]
    LI F, MAO Q, CHANG C C. Reversible data hiding scheme based on the Haar discrete wavelet transform and interleaving prediction method[J]. Multimedia Tools & Applications, 2018, 77(5):5149-5168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80cfbb7887debfd038387cb88fd00f43
    [16]
    ZHANG C Y, LI J B, WANG S S, et al. Encrypted image retrieval algorithm based on discrete wavelet transform and perceptual hash[J]. Journal of Computer Applications, 2018, 38(2):539-544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyy201802040
    [17]
    ARIVUDAINAMBI D, BALAJI S, SRIPATHY B, et al. Enhancing quality of coverage for target coverage problem using discrete haar wavelet[J]. Wireless Personal Communications, 2018, 101(3):1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d8b98b010fa1ae4e8e399f02e26386b
    [18]
    CALDERóN-RICO R, CARRASCO-ALVAREZ R, CASTILLO J V. Dynamic wavelet-based pilot allocation algorithm for OFDM-based cognitive radio systems[J]. Telecommunication Systems, 2018, 68(2):193-200. DOI: 10.1007/s11235-017-0386-0
    [19]
    ZENG J Q, WANG J, CHEN Y, et al. Multiple-color-image compression and encryption by using discrete wavelet transform in Fresnel transform in Fresnel transform domain[J]. Laser Technology, 2018, 42(6):733-738(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201806002
    [20]
    ARGOUL F, ARNEODO A, ELEZGARAY J, et al. Wavelet transform of fractal aggregates[J]. Physics Letters, 2017, A135(6):327-336. DOI: 10.1103-PhysRevLett.64.745/
    [21]
    KE X Zh, ZHANG Q W. Experimental study on FSO-WOFDM system[J]. Infrared and Laser Engineering, 2018, 47(10):247-253(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201810032

Catalog

    Article views (3) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return