Advanced Search
GUO Naihao, WANG Jingxuan, XIANG Xia. Study on laser cleaning process of sol-gel film optical surface[J]. LASER TECHNOLOGY, 2020, 44(2): 156-160. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.003
Citation: GUO Naihao, WANG Jingxuan, XIANG Xia. Study on laser cleaning process of sol-gel film optical surface[J]. LASER TECHNOLOGY, 2020, 44(2): 156-160. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.003

Study on laser cleaning process of sol-gel film optical surface

More Information
  • Received Date: April 14, 2019
  • Revised Date: May 26, 2019
  • Published Date: March 24, 2020
  • In order to solve the problem of particle contamination on the surface of optical elements, on the basis of single laser dry cleaning, laser cleaning assisted by air displacement system was proposed. Nd:YAG laser with 355nm wavelength was used. Typical SiO2 pollutant particulate with optical surface diameter of 1μm~50μm for sol-gel SiO2 thin film fused silica was theoretically analyzed and cleaning experiments were carried out. The process parameters for laser cleaning were obtained. The results show that, for single crystal laser dry cleaning of sol-gel membrane fused silica samples, optimum laser energy density is 2.29J/cm2. The process parameters of laser cleaning are different from those of uncoated quartz. Under the optimum technological parameters, the effect of single laser cleaning on SiO2 particles with particle size more than 1μm is obvious. The removal rate is 82.96%. Excessive contamination density will weaken the cleaning effect and damage the base. Laser cleaning assisted by air displacement system can further enhance the removal effect of particle contamination on optical surface. This research has important research significance and practical value for on-line cleaning of optical components and the design of cleaning equipment in large-scale high-power solid-state laser devices.
  • [1]
    ZHANG C L, LI X B, WANG Z G, et al. Laser cleaning techniques for removing surface particulate contaminants on sol-gel SiO2 films[J]. Chinese Physics Letters, 2011, 28(7): 074205. DOI: 10.1088/0256-307X/28/7/074205
    [2]
    ZHANG Ch L, YAO Ch M. Particulate contaminants removal on sol-gel film using 355nm pulsed-laser[J]. Scientia Sinica Technologica, 2016, 46(9): 926-930(in Chinese). DOI: 10.1360/N092016-00111
    [3]
    LI H, BAI Y, YAN L H, et al. Stability of sol-gel silica coatings under ISO class 5 atmosphere condition[J]. High Power Laser and Particle Beams, 2018, 30(5): 052001(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201805005
    [4]
    MIAO X X, CHENG X F, WANG H B, et al. Experiment on cleaning side of large-aperture optics in high power laser system[J]. High Power Laser and Particle Beams, 2013, 25(4): 890-894(in Chinese). DOI: 10.3788/HPLPB20132504.0890
    [5]
    XU Sh Zh, DOU H Q, HAN F M, et al. Laser cleaning of particulate contaminants on K9 glass surface[J]. Research and Exploration in Laboratory, 2017, 36(6): 5-8(in Chinese).
    [6]
    KIM T, LEE J M, CHO S H, et al. Acoustic emission monitoring during laser shock cleaning of silicon wafers[J].Optics & Lasers in Engineering, 2005, 43(9):1010-1020. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef8400ad9e453a023cbdaf73f207727f
    [7]
    LUO J F, SONG Sh J, WANG P Q, et al. Study on removal mechanism of micro-/nano-particles on silicon surface by laser plasma[J]. Laser Technology, 2018, 42(4): 567-571(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201804025
    [8]
    LIU H, MIAO X X, YANG K, et al. Atmosphere pressure plasma cleaning of grease contamination on sol-gel SiO2 coating[J].High Power Laser and Particle Beams, 2015, 27(11): 112008(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs201511023
    [9]
    ALSHAER A W, LI L, MISTRY A. The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture[J].Optics & Laser Technology, 2014, 64(4): 162-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec54d77bbddffef2498db0f72f0b2665
    [10]
    XING H N, RAN H L, ZHAO H F, et al. Development and application of laser cleaning technology[J]. Cleaning World, 2018, 34(5): 23-31(in Chinese).
    [11]
    ZHANG Z H, YU X Ch, WANG Y, et al. Experimental study about cleaning of tire molds with pulse YAG laser[J]. Laser Technology, 2018, 42(1): 127-130(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801025
    [12]
    LIU H, YI R, LI Y X. Application of different wavelength laser cleaning technology in archaeological metal objects cleaning[J]. Laser Journal, 2019, 40(4): 149-153(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgzz201904032
    [13]
    YUE L Y, WANG Z B, LI L. Material morphological characteristics in laser ablation of alpha case form titanium alloy[J]. Applied Surface Science, 2012, 258(20): 8065-8071. DOI: 10.1016/j.apsusc.2012.04.173
    [14]
    ZHOU C, WANG G, CHEN G Y, et al. Experimental study on picosecond pulse laser cleaning of aluminun alloy[J]. Applied Laser, 2018, 38(2): 256-262(in Chinese).
    [15]
    VEREECKE G, HEYNS M M, ROHR E. Influence of beam incidence angle on dry laser cleaning of surface particles[J]. Applied Surface Science, 2000, 157(1): 67-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e83f41d2b2ef85de51f2b112daa3cdef
    [16]
    JIN S, WANG J X, YUAN X D, et al. Laser paint removal technology for aircraft metal skin and composite materials[J]. High Energy Beam Machining, 2018, 61(17): 63-70(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkgyjs201817009
    [17]
    CHEN Y M, ZHOU L Z, YAN F, et al. Mechanism and quality evaluation of laser cleaning of aluminum alloy[J]. Chinese Journal of Lasers, 2017, 44(12): 1202005(in Chinese). DOI: 10.3788/CJL201744.1202005
    [18]
    TONG Y Q, ZHANG Y K, YAO H B, et al. Plasma spectral analysis of laser cleaning process in air[J]. Spectroscopy and Spectral Analysis, 2011, 31(9): 2542-2545(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx202001051
    [19]
    LEE J M, WATKINS K G. Removal of small particles on silicon wafer by laser-induced airborne plasma shock waves[J]. Journal of Applied Physics, 2001, 89(11): 6496-6500. DOI: 10.1063/1.1353562
    [20]
    TIAN W Ch, JIA J Y, CHEN G Y. Digital density in hamaker micro continuum medium principle and hamaker constant[J].Chinese Journal of Computational Physics, 2006, 23(3): 366-370(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl200603016
    [21]
    WANG H P, JING J, BLUM L. Interaction energy between spherical colloidal particles——the improvement on Derjaguin method[J]. Chemical Journal of Chinese Universities, 1994, 15(10):1538-1542(in Chinese).
  • Cited by

    Periodical cited type(10)

    1. 石岩,刘佳. 板式换热器激光密封焊接关键技术研究. 机械工程学报. 2022(06): 101-109 .
    2. 陈琪,肖述广,王超,谢志雄,罗平,董仕节,解剑英. 薄壁TA2钛管高频焊接接头的组织和力学性能. 材料热处理学报. 2022(06): 175-182 .
    3. 张强勇,赵先锐,刘桂香,陈勇,朱征宇,倪站站. 304不锈钢激光焊接工艺及数值模拟. 电焊机. 2021(04): 1-8 .
    4. 王维东,毕宗岳,徐学利. 焊后冷却方式对S20433奥氏体不锈钢等离子弧焊接头性能的影响. 机械工程材料. 2020(01): 74-77 .
    5. 李忠,王涛,刘佳,石岩,白陈明,栗红星. 工艺参量对铝合金复合焊接接头耐蚀性的影响. 激光技术. 2019(02): 189-194 . 本站查看
    6. 董伟伟,林健,许海亮,符寒光,雷永平,王细波. SUS304不锈钢超薄片脉冲激光焊接工艺及接头的显微组织和力学性能. 机械工程材料. 2019(05): 38-42+48 .
    7. 包仁东,苏轩,陶汪. 奥氏体不锈钢激光焊接工艺研究. 应用激光. 2018(01): 26-31 .
    8. 龚五堂,雷黎明. 0.2mm不锈钢外观件激光精密焊接工艺研究. 应用激光. 2018(04): 597-600 .
    9. 周媛,蔡艳,衡昊坤,盛洁. 氮元素对奥氏体不锈钢激光焊缝气孔和性能的影响. 现代制造技术与装备. 2017(03): 87-89 .
    10. 李镇,石岩,刘佳,李言飞,李云峰,倪聪,闻龙. 镀镍层对铝/钢异种金属激光焊接质量的影响. 应用激光. 2016(03): 316-320 .

    Other cited types(6)

Catalog

    Article views (9) PDF downloads (25) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return