Advanced Search
HAN Xiaoxiao, TONG Yuanwei. Design and application of birefringent metasurface based on π-shape structure[J]. LASER TECHNOLOGY, 2020, 44(1): 42-49. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.008
Citation: HAN Xiaoxiao, TONG Yuanwei. Design and application of birefringent metasurface based on π-shape structure[J]. LASER TECHNOLOGY, 2020, 44(1): 42-49. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.008

Design and application of birefringent metasurface based on π-shape structure

More Information
  • Received Date: March 18, 2019
  • Revised Date: April 14, 2019
  • Published Date: January 24, 2020
  • In order to realize birefringent metasurface with simple structure and high transmittance, the generalized thin plate transition conditions was used to analyze the relationship between metasurface structure and incident field, reflection field and transmission field around it. Surface polarizability and magnetic susceptibility of dielectric space domain were utilized to describe the equivalent properties of the corresponding metasurfaces. A birefringent metasurface based on π-shaped metal structure unit was designed. By arranging 7 elements with gradient transmission phase in sequence, a metasurface with birefringence of x-polarized, y-polarized electromagnetic waves was formed. The results show that, in beam refraction and polarization splitting metasurfaces, the loss is less than -8dB. Full transmission is achieved in λ/4 wave-plate. The designed birefringent metasurface has high transmission property to electromagnetic wave incident vertically. Beam separation of x-polarized electromagnetic wave and y-polarized electromagnetic wave can be realized. The birefringence is realized. The research results have certain guiding significance for the design and implementation of high performance metasurfaces.
  • [1]
    VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4):509-514. DOI: 10.1070/PU1968v010n04ABEH003699
    [2]
    GAO X, HAN X, CAO W P, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(8):3522-3530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c96f401f4a10ca56a34e31b1151fc83f
    [3]
    LI Y, ZHANG J, QU S, et al. Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces[J]. Journal of Applied Physics, 2015, 117(4):011129. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234103971/
    [4]
    LIU X B, ZHANG J S, LI W, et al. Three-band polarization converter based on reflective metasurface[J]. IEEE Antennas & Wireless Propagation Letters, 2016, 16:924-927. http://cn.bing.com/academic/profile?id=bc4eafad2b3a68df55fd1af3f384042c&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    ACHOURI K, SALEM M A, CALOZ C. General metasurface synthesis based on susceptibility tensors[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 2977-2991. DOI: 10.1109/TAP.2015.2423700
    [6]
    NIEMI T, KARILAINEN A O, TRETYAKOY S A. Synthesis of polarization transformers[J]. IEEE Transactions on Antennas and Pro-pagation, 2013, 61(6): 3102-3111. DOI: 10.1109/TAP.2013.2252136
    [7]
    KODERA T, SOUNAS D L, CALOZ C. Artificial Faraday rotation using a ring metamaterial structure without static magnetic field[J]. Applied Physics Letters, 2011, 99(3): 031114. DOI: 10.1063/1.3615688
    [8]
    YU N, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2):139-50. DOI: 10.1038/nmat3839
    [9]
    SHI H Y, LI J X, ZHANG A X. Gradient metasurface with both polarization-controlled directional surface wave coupling and anomalous reflection[J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14:104-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efde8306b166671bd3330e7e39369f2d
    [10]
    SUN S, YANG K Y, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12):6223. DOI: 10.1021/nl3032668
    [11]
    SALEM M A, ACHOURI K, CALOZ C. Metasurface synthesis for time-harmonic waves: Exact spectral and spatial methods[J]. Progress in Electromagnetics Research, 2014, 149: 205-216. DOI: 10.2528/PIER14100505
    [12]
    SALEM M A, CALOZ C. Manipulating light at distance by a metasurface using momentum transformation[J]. Optics Express, 2014, 22(12): 14530-14543. DOI: 10.1364/OE.22.014530
    [13]
    CHEN P Y, ALU A. Subwavelength imaging using phaseconjugating nonlinear nanoantenna arrays[J]. Nano Letters, 2011, 11(12): 5514-5518. DOI: 10.1021/nl203354b
    [14]
    ROY T, ROGERS E T, ZHELUDEV N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6): 7577-7582. DOI: 10.1364/OE.21.007577
    [15]
    ACHOURI K, LAVIGNE G, SALEM M A, et al. Metasurface spatial processor for electromagnetic remote control[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1759-1767. DOI: 10.1109/TAP.2016.2537369
    [16]
    SOUNAS D L, KODERA T, CALOZ C. Electromagnetic modeling of a magnetless nonreciprocal gyrotropic metasurface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(1): 221-231. DOI: 10.1109/TAP.2012.2214997
    [17]
    HADAD Y, SOUNAS D L, ALU A. Space-time gradient metasurfaces[J]. Physical Review, 2015, B92(10): 100304. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235557962/
    [18]
    KHAN B A, GUPTA S, CALOZ C. Spatial nonreciprocal and nongyrotropic structure[C]//International Symposium on Antennas and Propagation (ISAP). New York, USA: IEEE, 2015: 1-4.
    [19]
    ASADCHY V, ALBOOYEH M, TCVETKOVA S, et al. Metasurfa-ces for perfect and full control of refraction and reflection[C]//10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS).New York, USA: IEEE, 2016: 364-366.
    [20]
    ZHU B O, FENG Y. Passive Metasurface for reflectionless and arbi-tary control of electromagnetic wave transmission[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(12): 5500-5511. http://cn.bing.com/academic/profile?id=88fb1485caef6dcd031aa77dae575f88&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    PFEIFFER C, GRBIC A. Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis[J]. Physical Review A-pplied, 2014, 2(4): 044011. http://cn.bing.com/academic/profile?id=cd4f81791e815a3b515c8713aa6058fe&encoded=0&v=paper_preview&mkt=zh-cn

Catalog

    Article views (21) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return