Advanced Search
BAO Weizheng, ZHANG Fumin, QU Xinghua. Laser ranging method of frequency modulation interference based on equal optical frequency subdivision resampling[J]. LASER TECHNOLOGY, 2020, 44(1): 1-6. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.001
Citation: BAO Weizheng, ZHANG Fumin, QU Xinghua. Laser ranging method of frequency modulation interference based on equal optical frequency subdivision resampling[J]. LASER TECHNOLOGY, 2020, 44(1): 1-6. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.001

Laser ranging method of frequency modulation interference based on equal optical frequency subdivision resampling

More Information
  • Received Date: May 28, 2019
  • Revised Date: June 25, 2019
  • Published Date: January 24, 2020
  • In order to solve the problem that modulation nonlinearity of frequency modulated continuous wave(FMCW) laser leads to the broadening of measurement signal spectrum and the reduction of laser interferometric ranging accuracy, frequency modulated interferometry ranging method based on equal optical frequency subdivision and resampling was adopted. Theoretical analysis and experimental verification were carried out. Waveform data of dual optical path ranging system after equal optical frequency subdivision and resampling of target signals at different positions were obtained. Spectrum analysis was also carried out. The results show that, by means of equal optical frequency subdivision and resampling, the subdivided clock signal points are used to resample the target measurement signal whose distance is greater than optical path difference of auxiliary interferometer. The influence of modulation nonlinearity of laser is eliminated. The problem of signal distortion caused by insufficient sampling points is avoided. Within the measurement range of 4.3m, comparing with laser interferometer, the maximum residual error of equal optical frequency subdivision resampling ranging system does not exceed ±18.46μm. The maximum standard deviation is 23.39μm. Optical path difference of auxiliary interferometer used in this method is very short. It is less affected by the environment. A stable clock signal can be obtained. It can also reduce the volume and cost of dual optical path FMCW ranging system. This study provides practical reference for long-distance and high-precision FMCW measurement.
  • [1]
    MATEO A B, BARBER Z W. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar[J]. Applied Optics, 2015, 54(19): 5911-5916. DOI: 10.1364/AO.54.005911
    [2]
    DILAZARO T, NEHMETALLAH G. Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs[J]. Optics Express, 2018, 26(3): 2891-2904. DOI: 10.1364/OE.26.002891
    [3]
    KAKUMA S. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time mea-surements of distance and radial velocity[J]. Optical Review, 2017, 24(1): 39-46. DOI: 10.1007/s10043-016-0294-7
    [4]
    ZHANG T, QU X H, ZHANG F M. Nonlinear error correction for FMCW ladar by the amplitude modulation method[J]. Optics Express, 2018, 26(9): 11519-11528. DOI: 10.1364/OE.26.011519
    [5]
    ZHANG Y Y, GUO Y, REN Y J, et al. Study of drift error and its compensation method in absolute distance measurement by optical frequency scanning interferometry[J]. Acta Optica Sinica, 2017, 37(12): 1212001(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201712022
    [6]
    JI N K, ZHANG F M, QU X H, et al. Ranging technology for frequency modulated continuous wave laser based on phase difference frequency measurement[J]. Chinese Journal of Lasers, 2018, 45(11): 1104002(in Chinese). DOI: 10.3788/CJL201845.1104002
    [7]
    ROOS P A, REIBEL R R, BERG T, et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 2009, 34(23): 3692-3694. DOI: 10.1364/OL.34.003692
    [8]
    BEHROOZPOUR B, SANDBORN P A M, QUACK N, et al. Elec- tronic-photonic integrated circuit for 3-D microimaging[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 161-172. DOI: 10.1109/JSSC.2016.2621755
    [9]
    MATEO A B, BARBER Z W. Precision and accuracy testing of FMCW ladar-based length metrology[J]. Applied Optics, 2015, 54(19): 6019-6024. DOI: 10.1364/AO.54.006019
    [10]
    BAUMANN E, GIORGETTA F R, CODDINGTON I, et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements[J]. Optics Letters, 2013, 38(12): 2026-2028. DOI: 10.1364/OL.38.002026
    [11]
    SHI G, ZHANG F M, QU X H, et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications[J]. Optical Engineering, 2014, 53(12): 122402. DOI: 10.1117/1.OE.53.12.122402
    [12]
    XU X K. Research on key technologies of laser frequency scanning interference absolute distance measurement[D]. Harbin: Harbin Institute of Technology, 2017: 36-53(in Chinese).
    [13]
    XU X K, LIU G D, LIU B G, et al. Research on the fiber dispersion and compensation in large-scale high-resolution broadband frequency-modulated continuous wave laser measurement system[J]. Optical Engineering, 2015, 54(7): 074102. DOI: 10.1117/1.OE.54.7.074102
    [14]
    LIU G D, XU X K, LIU B G, et al. Dispersion compensation method based on focus definition evaluation functions for high-resolution laser frequency scanning interference measurement[J]. Optics Communications, 2017, 386: 57-64. DOI: 10.1016/j.optcom.2016.10.052
    [15]
    PAN H, ZHANG F M, SHI Ch Zh, et al. High-precision frequency estimation for frequency modulated continuous wave laser ranging using the multiple signal classification method[J]. Applied Optics, 2017, 56(24): 6956-6961. DOI: 10.1364/AO.56.006956
    [16]
    PAN H, QU X H, SHI Ch Zh, et al. Precision evaluation method of measuring frequency modulated continuous wave laser distance[J]. Acta Physica Sinica, 2018, 67(9): 090201(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201809004
    [17]
    PAN H, QU X H, SHI Ch Zh, et al. Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry[J]. Optics Communications, 2018, 416: 214-220. DOI: 10.1016/j.optcom.2018.02.006
    [18]
    IIYAMA K, YASUDA M, TAKAMIYA S. Extended-range high-re-solution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer[J]. IEICE Transactions on Electronics, 2006, 89(6): 823-829.
    [19]
    ZHU L K, JIA F X, LI X L. Design of parallel high-speed FFT algorithm based on laser seeker signal. Laser Technology, 2018, 42(1): 89-93(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801017
  • Cited by

    Periodical cited type(9)

    1. 宋涵,赵光耀,张锋,王振,张昆桥. 柔性铰链多级增敏的光纤应变传感器设计应用. 数字制造科学. 2024(02): 89-94 .
    2. 韩颖,张旭,于明鑫,庄炜. 基于改进LSTM的FBG传感网络光谱基线校正方法. 光通信研究. 2024(04): 42-49 .
    3. 张子娇,刘万泉,张旭,吕峥,庄炜. 基于KMeans的MG-Y激光器准连续调谐方法. 光通信研究. 2024(04): 83-88 .
    4. 秦根朝,孟凡勇,李红,庄炜,董明利. 光纤光栅链路反射谱强度自适应解调. 红外与激光工程. 2022(05): 245-252 .
    5. 刘浩,吴静红,杨鹏,魏广庆,唐柏鉴. 混凝土结构裂缝高空间分辨率应变测量技术探测模拟试验. 苏州科技大学学报(工程技术版). 2020(02): 23-30 .
    6. 李莹莹,刘智超. 基于FBG的复杂面形应变场检测系统研究. 激光技术. 2020(05): 652-656 . 本站查看
    7. 江灏,周清旭,陈静,缪希仁. 畸变光谱下光纤布拉格光栅传感网络波长检测优化方法. 光学学报. 2019(10): 92-101 .
    8. 吴永红,朱莎,许蔚,张海明. 分布式光纤裂缝传感工程应用研究进展. 激光与光电子学进展. 2018(09): 15-28 .
    9. 宋言明,孟凡勇,娄小平,祝连庆. 采用FBG正交传感网络的静载识别研究. 电子测量与仪器学报. 2017(08): 1227-1232 .

    Other cited types(9)

Catalog

    Article views (7) PDF downloads (11) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return