Citation: | BAO Weizheng, ZHANG Fumin, QU Xinghua. Laser ranging method of frequency modulation interference based on equal optical frequency subdivision resampling[J]. LASER TECHNOLOGY, 2020, 44(1): 1-6. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.001 |
[1] |
MATEO A B, BARBER Z W. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar[J]. Applied Optics, 2015, 54(19): 5911-5916. DOI: 10.1364/AO.54.005911
|
[2] |
DILAZARO T, NEHMETALLAH G. Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs[J]. Optics Express, 2018, 26(3): 2891-2904. DOI: 10.1364/OE.26.002891
|
[3] |
KAKUMA S. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time mea-surements of distance and radial velocity[J]. Optical Review, 2017, 24(1): 39-46. DOI: 10.1007/s10043-016-0294-7
|
[4] |
ZHANG T, QU X H, ZHANG F M. Nonlinear error correction for FMCW ladar by the amplitude modulation method[J]. Optics Express, 2018, 26(9): 11519-11528. DOI: 10.1364/OE.26.011519
|
[5] |
ZHANG Y Y, GUO Y, REN Y J, et al. Study of drift error and its compensation method in absolute distance measurement by optical frequency scanning interferometry[J]. Acta Optica Sinica, 2017, 37(12): 1212001(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201712022
|
[6] |
JI N K, ZHANG F M, QU X H, et al. Ranging technology for frequency modulated continuous wave laser based on phase difference frequency measurement[J]. Chinese Journal of Lasers, 2018, 45(11): 1104002(in Chinese). DOI: 10.3788/CJL201845.1104002
|
[7] |
ROOS P A, REIBEL R R, BERG T, et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 2009, 34(23): 3692-3694. DOI: 10.1364/OL.34.003692
|
[8] |
BEHROOZPOUR B, SANDBORN P A M, QUACK N, et al. Elec- tronic-photonic integrated circuit for 3-D microimaging[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 161-172. DOI: 10.1109/JSSC.2016.2621755
|
[9] |
MATEO A B, BARBER Z W. Precision and accuracy testing of FMCW ladar-based length metrology[J]. Applied Optics, 2015, 54(19): 6019-6024. DOI: 10.1364/AO.54.006019
|
[10] |
BAUMANN E, GIORGETTA F R, CODDINGTON I, et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements[J]. Optics Letters, 2013, 38(12): 2026-2028. DOI: 10.1364/OL.38.002026
|
[11] |
SHI G, ZHANG F M, QU X H, et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications[J]. Optical Engineering, 2014, 53(12): 122402. DOI: 10.1117/1.OE.53.12.122402
|
[12] |
XU X K. Research on key technologies of laser frequency scanning interference absolute distance measurement[D]. Harbin: Harbin Institute of Technology, 2017: 36-53(in Chinese).
|
[13] |
XU X K, LIU G D, LIU B G, et al. Research on the fiber dispersion and compensation in large-scale high-resolution broadband frequency-modulated continuous wave laser measurement system[J]. Optical Engineering, 2015, 54(7): 074102. DOI: 10.1117/1.OE.54.7.074102
|
[14] |
LIU G D, XU X K, LIU B G, et al. Dispersion compensation method based on focus definition evaluation functions for high-resolution laser frequency scanning interference measurement[J]. Optics Communications, 2017, 386: 57-64. DOI: 10.1016/j.optcom.2016.10.052
|
[15] |
PAN H, ZHANG F M, SHI Ch Zh, et al. High-precision frequency estimation for frequency modulated continuous wave laser ranging using the multiple signal classification method[J]. Applied Optics, 2017, 56(24): 6956-6961. DOI: 10.1364/AO.56.006956
|
[16] |
PAN H, QU X H, SHI Ch Zh, et al. Precision evaluation method of measuring frequency modulated continuous wave laser distance[J]. Acta Physica Sinica, 2018, 67(9): 090201(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201809004
|
[17] |
PAN H, QU X H, SHI Ch Zh, et al. Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry[J]. Optics Communications, 2018, 416: 214-220. DOI: 10.1016/j.optcom.2018.02.006
|
[18] |
IIYAMA K, YASUDA M, TAKAMIYA S. Extended-range high-re-solution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer[J]. IEICE Transactions on Electronics, 2006, 89(6): 823-829.
|
[19] |
ZHU L K, JIA F X, LI X L. Design of parallel high-speed FFT algorithm based on laser seeker signal. Laser Technology, 2018, 42(1): 89-93(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801017
|
1. |
宋涵,赵光耀,张锋,王振,张昆桥. 柔性铰链多级增敏的光纤应变传感器设计应用. 数字制造科学. 2024(02): 89-94 .
![]() | |
2. |
韩颖,张旭,于明鑫,庄炜. 基于改进LSTM的FBG传感网络光谱基线校正方法. 光通信研究. 2024(04): 42-49 .
![]() | |
3. |
张子娇,刘万泉,张旭,吕峥,庄炜. 基于KMeans的MG-Y激光器准连续调谐方法. 光通信研究. 2024(04): 83-88 .
![]() | |
4. |
秦根朝,孟凡勇,李红,庄炜,董明利. 光纤光栅链路反射谱强度自适应解调. 红外与激光工程. 2022(05): 245-252 .
![]() | |
5. |
刘浩,吴静红,杨鹏,魏广庆,唐柏鉴. 混凝土结构裂缝高空间分辨率应变测量技术探测模拟试验. 苏州科技大学学报(工程技术版). 2020(02): 23-30 .
![]() | |
6. |
李莹莹,刘智超. 基于FBG的复杂面形应变场检测系统研究. 激光技术. 2020(05): 652-656 .
![]() | |
7. |
江灏,周清旭,陈静,缪希仁. 畸变光谱下光纤布拉格光栅传感网络波长检测优化方法. 光学学报. 2019(10): 92-101 .
![]() | |
8. |
吴永红,朱莎,许蔚,张海明. 分布式光纤裂缝传感工程应用研究进展. 激光与光电子学进展. 2018(09): 15-28 .
![]() | |
9. |
宋言明,孟凡勇,娄小平,祝连庆. 采用FBG正交传感网络的静载识别研究. 电子测量与仪器学报. 2017(08): 1227-1232 .
![]() |