[1]
|
YAMAMOTO K, YOSHIMI M, SUZUKI T, et al. Thin film poly-Si solar cell on glass substrate fabricated at low temperature[J]. MRS Online Proceedings Library, 1998, 507(2):179-185. |
[2]
|
SHAIK H, BASAVARAJU U, RACHITH S N, et al. Surface-plasmon-induced photoabsorption of Ag nanoparticle embedded a-Si solar cell[J]. Optical Materials, 2017, 73(3):179-187. |
[3]
|
SHEN H J, LI T, LU H D, et al. Enhancement of light absorption in thin film silicon solar cells with light traping [J]. Chinese Journal of Luminescence, 2016, 37(7):816-822(in Chinese). doi: 10.3788/fgxb20163707.0816 |
[4]
|
MULLER J, RECH B, SPRINGER J, et al. TCO and light trapping in silicon thin film solar cells[J]. Solar Energy, 2004, 77(6):917-930. doi: 10.1016/j.solener.2004.03.015 |
[5]
|
SHI X, SUN Ch, WANG X Q. One-dimensional diffraction grating structure for rear reflection surface of thin film silicon solar cells[J]. Laser & Optoelectronics Progress, 2018, 55(1):010501 (in Chin-ese). |
[6]
|
ZHU Zh P, QIN Y Q. Nanowires array designed by means of two-dimension closed-form solution for antireflection[J]. Acta Physica Sinica, 2013, 62(15):157801 (in Chinese). |
[7]
|
JUNG S M, KIM Y H, KIM S I, et al. Design and fabrication of multi-layer antireflection coating for Ⅲ-Ⅴ solar cell[J]. Current A-pplied Physics, 2011, 11(3):538-541. doi: 10.1016/j.cap.2010.09.010 |
[8]
|
CATCHPOLE K R, POLMAN A. Design principles for particle plasmon enhanced solar cells[J]. Applied Physics Letters, 2008, 93(19):191113. doi: 10.1063/1.3021072 |
[9]
|
WANG K X, YU Z, LIU V, et al. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings[J]. Nano Letters, 2012, 12(3):1616-1619. doi: 10.1021/nl204550q |
[10]
|
GUPTA N D, JANYANI V, MATHEW M, et al. Light trapping in p-i-n superlattice based InGaN/GaN solar cells using photonic crystal [J]. Optical & Quantum Electronics, 2016, 48(11):1-17. |
[11]
|
QIN F F, ZHANG H M, WANG C X, et al. Design and simulation of anodic aluminum oxide nanograting anti-reflection structure for thin film silicon solar cells[J]. Acta Physica Sinica, 2014, 63(19):198802(in Chinese). |
[12]
|
SHAO G J. Investigation on the enhancement of conversion efficiency of solar cell [D]. Nanjing: Southeast University, 2016: 20-23(in Chinese). |
[13]
|
ZHENG Z W, YU J, LAI M H, et al. Efficiency enhancement for resonant-cavity-enhanced InGaN/GaN multiple quantum well solar cells[J]. Vacuum, 2016, 12(1): 1-6. |
[14]
|
IQBAL T, IJAZ M, JAVAID M, et al. An optimal au grating structure for light absorption in amorphous silicon thin film solar cell[J]. Plasmonics, 2018, 24(12):1-8. |
[15]
|
HAKIM F, ALAM M K. Improvement of photo-current density of P3HT: PCBM bulk heterojunction organic solar cell using periodic nanostructures[C]// International Conference on Electrical, Computer and Communication Engineering. New York, USA: IEEE, 2017: 170-174. |
[16]
|
ZHENG C G, JIANG J L, XIAN F L, et al. Design of periodic metal-insulator-metal waveguide back structures for the enhancement of light absorption in thin-film solar cells[J]. Chinese Physics, 2011, B20(9):192-197. |
[17]
|
SCHUSTER C S, KOWALCZEWSKI P, MARTINS E R, et al. Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique[J]. Optics Express, 2013, 21(9):A433-A438. |
[18]
|
SHENG X Ch. Semiconductor spectroscopy and optical properties[M]. Beijing: Science Press, 2002:21-29(in Chinese). |
[19]
|
YOU J, LI X, XIE F, et al. Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode[J]. Advanced Energy Materials, 2012, 2(10):1203-1207. doi: 10.1002/aenm.201200108 |
[20]
|
YABLONOVITCH E. Statistical ray optics[J]. Journal of the Optical Society of America, 1982, 72(7):899-907. doi: 10.1364/JOSA.72.000899 |
[21]
|
ULBRICH C, PETERS M, BLÄSI B, et al. Enhanced light trapping in thin-film solar cells by a directionally selective filter[J]. Optics Express, 2010, 18(s2):A133-A138. doi: 10.1364/OE.18.00A133 |