Advanced Search
JIANG Dafei, FANG Xiaomin, LIAO Dongjin. Optimization of thin film solar cells with double-grating structure[J]. LASER TECHNOLOGY, 2019, 43(6): 850-854. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.022
Citation: JIANG Dafei, FANG Xiaomin, LIAO Dongjin. Optimization of thin film solar cells with double-grating structure[J]. LASER TECHNOLOGY, 2019, 43(6): 850-854. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.022

Optimization of thin film solar cells with double-grating structure

More Information
  • Received Date: December 13, 2018
  • Revised Date: January 03, 2019
  • Published Date: November 24, 2019
  • In order to improve the short circuit current density and conversion efficiency of crystalline silicon thin film solar cells, a silicon dielectric grating and an aluminium metal grating were integrated on the front and back of single crystal silicon thin film solar cells respectively. The effect of the period, thickness and duty cycle of both the gratings on the short-circuit current density and optical conversion efficiency of single crystal silicon thin film solar cells were simulated with finite difference time-domain software. The results show that, the short-circuit current density can reach 35.15mA/cm2 and the conversion efficiency is 43.35% when both the front and back gratings are at the optimum value (for the dielectric grating, duty cycle F=0.8, period P=0.632μm, thickness hg=0.42μm; for the metal grating, duty cycle F1=0.9, period P=0.632μm and thickness hm=0.005μm). After comparing the optimal grating monocrystalline silicon thin film solar cells with traditional monocrystalline silicon thin film solar cells, the grating monocrystalline silicon thin film solar cells have a significant improvement in both optical path and absorption efficiency. This study provides theoretical guidance for the preparation of high performance thin film solar cells in the future.
  • [1]
    YAMAMOTO K, YOSHIMI M, SUZUKI T, et al. Thin film poly-Si solar cell on glass substrate fabricated at low temperature[J]. MRS Online Proceedings Library, 1998, 507(2):179-185. http://cn.bing.com/academic/profile?id=8b3b37c8da5138066b3dc3e9c917f0f4&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    SHAIK H, BASAVARAJU U, RACHITH S N, et al. Surface-plasmon-induced photoabsorption of Ag nanoparticle embedded a-Si solar cell[J]. Optical Materials, 2017, 73(3):179-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=284a82a6d2729f466ac9fae37f75dfb4
    [3]
    SHEN H J, LI T, LU H D, et al. Enhancement of light absorption in thin film silicon solar cells with light traping [J]. Chinese Journal of Luminescence, 2016, 37(7):816-822(in Chinese). DOI: 10.3788/fgxb20163707.0816
    [4]
    MULLER J, RECH B, SPRINGER J, et al. TCO and light trapping in silicon thin film solar cells[J]. Solar Energy, 2004, 77(6):917-930. DOI: 10.1016/j.solener.2004.03.015
    [5]
    SHI X, SUN Ch, WANG X Q. One-dimensional diffraction grating structure for rear reflection surface of thin film silicon solar cells[J]. Laser & Optoelectronics Progress, 2018, 55(1):010501 (in Chin-ese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201801018
    [6]
    ZHU Zh P, QIN Y Q. Nanowires array designed by means of two-dimension closed-form solution for antireflection[J]. Acta Physica Sinica, 2013, 62(15):157801 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201315060
    [7]
    JUNG S M, KIM Y H, KIM S I, et al. Design and fabrication of multi-layer antireflection coating for Ⅲ-Ⅴ solar cell[J]. Current A-pplied Physics, 2011, 11(3):538-541. DOI: 10.1016/j.cap.2010.09.010
    [8]
    CATCHPOLE K R, POLMAN A. Design principles for particle plasmon enhanced solar cells[J]. Applied Physics Letters, 2008, 93(19):191113. DOI: 10.1063/1.3021072
    [9]
    WANG K X, YU Z, LIU V, et al. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings[J]. Nano Letters, 2012, 12(3):1616-1619. DOI: 10.1021/nl204550q
    [10]
    GUPTA N D, JANYANI V, MATHEW M, et al. Light trapping in p-i-n superlattice based InGaN/GaN solar cells using photonic crystal [J]. Optical & Quantum Electronics, 2016, 48(11):1-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f2d08b4f1a568bf6a713f6896bc933e
    [11]
    QIN F F, ZHANG H M, WANG C X, et al. Design and simulation of anodic aluminum oxide nanograting anti-reflection structure for thin film silicon solar cells[J]. Acta Physica Sinica, 2014, 63(19):198802(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rgjtxb98201406032
    [12]
    SHAO G J. Investigation on the enhancement of conversion efficiency of solar cell [D]. Nanjing: Southeast University, 2016: 20-23(in Chinese).
    [13]
    ZHENG Z W, YU J, LAI M H, et al. Efficiency enhancement for resonant-cavity-enhanced InGaN/GaN multiple quantum well solar cells[J]. Vacuum, 2016, 12(1): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4949779aa43f6e03751c3f1bb8775294
    [14]
    IQBAL T, IJAZ M, JAVAID M, et al. An optimal au grating structure for light absorption in amorphous silicon thin film solar cell[J]. Plasmonics, 2018, 24(12):1-8. http://cn.bing.com/academic/profile?id=912a7bb9976e2aa640947d16c5bb4253&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    HAKIM F, ALAM M K. Improvement of photo-current density of P3HT: PCBM bulk heterojunction organic solar cell using periodic nanostructures[C]// International Conference on Electrical, Computer and Communication Engineering. New York, USA: IEEE, 2017: 170-174.
    [16]
    ZHENG C G, JIANG J L, XIAN F L, et al. Design of periodic metal-insulator-metal waveguide back structures for the enhancement of light absorption in thin-film solar cells[J]. Chinese Physics, 2011, B20(9):192-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwl-e201109034
    [17]
    SCHUSTER C S, KOWALCZEWSKI P, MARTINS E R, et al. Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique[J]. Optics Express, 2013, 21(9):A433-A438. http://cn.bing.com/academic/profile?id=1a01002a805000fa5cb3137b4514748d&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    SHENG X Ch. Semiconductor spectroscopy and optical properties[M]. Beijing: Science Press, 2002:21-29(in Chinese).
    [19]
    YOU J, LI X, XIE F, et al. Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode[J]. Advanced Energy Materials, 2012, 2(10):1203-1207. DOI: 10.1002/aenm.201200108
    [20]
    YABLONOVITCH E. Statistical ray optics[J]. Journal of the Optical Society of America, 1982, 72(7):899-907. DOI: 10.1364/JOSA.72.000899
    [21]
    ULBRICH C, PETERS M, BLÄSI B, et al. Enhanced light trapping in thin-film solar cells by a directionally selective filter[J]. Optics Express, 2010, 18(s2):A133-A138. DOI: 10.1364/OE.18.00A133
  • Cited by

    Periodical cited type(6)

    1. 杨天敏,王晓燕. 偏振图像融合的人脸图像增强研究. 激光杂志. 2023(03): 148-152 .
    2. 秦小娜,刘文华. 基于偏微分方程和机器视觉的模糊激光图像增强研究. 激光杂志. 2023(09): 98-102 .
    3. 郑伟,李涵,安晓林,刘帅奇,张晓丹,马泽鹏. 基于ShearLab 3D变换的3维PET/MRI图像融合. 激光技术. 2021(01): 86-92 . 本站查看
    4. 张科星. 基于深度学习理论的激光图像融合研究. 激光杂志. 2021(04): 121-125 .
    5. 杨竹青,谢宏. 基于非下采样Shearlet变换与剥离策略的可见光与红外图像融合算法. 光学技术. 2020(06): 728-733 .
    6. 曾志宏,张凌,余少勇. 基于区域特征的长波红外偏振图像融合. 激光杂志. 2020(12): 65-69 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return