Advanced Search
JIANG Dafei, FANG Xiaomin, LIAO Dongjin. Optimization of thin film solar cells with double-grating structure[J]. LASER TECHNOLOGY, 2019, 43(6): 850-854. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.022
Citation: JIANG Dafei, FANG Xiaomin, LIAO Dongjin. Optimization of thin film solar cells with double-grating structure[J]. LASER TECHNOLOGY, 2019, 43(6): 850-854. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.022

Optimization of thin film solar cells with double-grating structure

More Information
  • Received Date: December 13, 2018
  • Revised Date: January 03, 2019
  • Published Date: November 24, 2019
  • In order to improve the short circuit current density and conversion efficiency of crystalline silicon thin film solar cells, a silicon dielectric grating and an aluminium metal grating were integrated on the front and back of single crystal silicon thin film solar cells respectively. The effect of the period, thickness and duty cycle of both the gratings on the short-circuit current density and optical conversion efficiency of single crystal silicon thin film solar cells were simulated with finite difference time-domain software. The results show that, the short-circuit current density can reach 35.15mA/cm2 and the conversion efficiency is 43.35% when both the front and back gratings are at the optimum value (for the dielectric grating, duty cycle F=0.8, period P=0.632μm, thickness hg=0.42μm; for the metal grating, duty cycle F1=0.9, period P=0.632μm and thickness hm=0.005μm). After comparing the optimal grating monocrystalline silicon thin film solar cells with traditional monocrystalline silicon thin film solar cells, the grating monocrystalline silicon thin film solar cells have a significant improvement in both optical path and absorption efficiency. This study provides theoretical guidance for the preparation of high performance thin film solar cells in the future.
  • [1]
    YAMAMOTO K, YOSHIMI M, SUZUKI T, et al. Thin film poly-Si solar cell on glass substrate fabricated at low temperature[J]. MRS Online Proceedings Library, 1998, 507(2):179-185. http://cn.bing.com/academic/profile?id=8b3b37c8da5138066b3dc3e9c917f0f4&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    SHAIK H, BASAVARAJU U, RACHITH S N, et al. Surface-plasmon-induced photoabsorption of Ag nanoparticle embedded a-Si solar cell[J]. Optical Materials, 2017, 73(3):179-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=284a82a6d2729f466ac9fae37f75dfb4
    [3]
    SHEN H J, LI T, LU H D, et al. Enhancement of light absorption in thin film silicon solar cells with light traping [J]. Chinese Journal of Luminescence, 2016, 37(7):816-822(in Chinese). DOI: 10.3788/fgxb20163707.0816
    [4]
    MULLER J, RECH B, SPRINGER J, et al. TCO and light trapping in silicon thin film solar cells[J]. Solar Energy, 2004, 77(6):917-930. DOI: 10.1016/j.solener.2004.03.015
    [5]
    SHI X, SUN Ch, WANG X Q. One-dimensional diffraction grating structure for rear reflection surface of thin film silicon solar cells[J]. Laser & Optoelectronics Progress, 2018, 55(1):010501 (in Chin-ese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201801018
    [6]
    ZHU Zh P, QIN Y Q. Nanowires array designed by means of two-dimension closed-form solution for antireflection[J]. Acta Physica Sinica, 2013, 62(15):157801 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201315060
    [7]
    JUNG S M, KIM Y H, KIM S I, et al. Design and fabrication of multi-layer antireflection coating for Ⅲ-Ⅴ solar cell[J]. Current A-pplied Physics, 2011, 11(3):538-541. DOI: 10.1016/j.cap.2010.09.010
    [8]
    CATCHPOLE K R, POLMAN A. Design principles for particle plasmon enhanced solar cells[J]. Applied Physics Letters, 2008, 93(19):191113. DOI: 10.1063/1.3021072
    [9]
    WANG K X, YU Z, LIU V, et al. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings[J]. Nano Letters, 2012, 12(3):1616-1619. DOI: 10.1021/nl204550q
    [10]
    GUPTA N D, JANYANI V, MATHEW M, et al. Light trapping in p-i-n superlattice based InGaN/GaN solar cells using photonic crystal [J]. Optical & Quantum Electronics, 2016, 48(11):1-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f2d08b4f1a568bf6a713f6896bc933e
    [11]
    QIN F F, ZHANG H M, WANG C X, et al. Design and simulation of anodic aluminum oxide nanograting anti-reflection structure for thin film silicon solar cells[J]. Acta Physica Sinica, 2014, 63(19):198802(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rgjtxb98201406032
    [12]
    SHAO G J. Investigation on the enhancement of conversion efficiency of solar cell [D]. Nanjing: Southeast University, 2016: 20-23(in Chinese).
    [13]
    ZHENG Z W, YU J, LAI M H, et al. Efficiency enhancement for resonant-cavity-enhanced InGaN/GaN multiple quantum well solar cells[J]. Vacuum, 2016, 12(1): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4949779aa43f6e03751c3f1bb8775294
    [14]
    IQBAL T, IJAZ M, JAVAID M, et al. An optimal au grating structure for light absorption in amorphous silicon thin film solar cell[J]. Plasmonics, 2018, 24(12):1-8. http://cn.bing.com/academic/profile?id=912a7bb9976e2aa640947d16c5bb4253&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    HAKIM F, ALAM M K. Improvement of photo-current density of P3HT: PCBM bulk heterojunction organic solar cell using periodic nanostructures[C]// International Conference on Electrical, Computer and Communication Engineering. New York, USA: IEEE, 2017: 170-174.
    [16]
    ZHENG C G, JIANG J L, XIAN F L, et al. Design of periodic metal-insulator-metal waveguide back structures for the enhancement of light absorption in thin-film solar cells[J]. Chinese Physics, 2011, B20(9):192-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwl-e201109034
    [17]
    SCHUSTER C S, KOWALCZEWSKI P, MARTINS E R, et al. Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique[J]. Optics Express, 2013, 21(9):A433-A438. http://cn.bing.com/academic/profile?id=1a01002a805000fa5cb3137b4514748d&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    SHENG X Ch. Semiconductor spectroscopy and optical properties[M]. Beijing: Science Press, 2002:21-29(in Chinese).
    [19]
    YOU J, LI X, XIE F, et al. Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode[J]. Advanced Energy Materials, 2012, 2(10):1203-1207. DOI: 10.1002/aenm.201200108
    [20]
    YABLONOVITCH E. Statistical ray optics[J]. Journal of the Optical Society of America, 1982, 72(7):899-907. DOI: 10.1364/JOSA.72.000899
    [21]
    ULBRICH C, PETERS M, BLÄSI B, et al. Enhanced light trapping in thin-film solar cells by a directionally selective filter[J]. Optics Express, 2010, 18(s2):A133-A138. DOI: 10.1364/OE.18.00A133
  • Related Articles

    [1]SUN Xiaojuan, HAN Peigao, JUAN Fangying, HAO Dianzhong. Analysis of optical constants of TiO2 thin film based on in-situ common angle ellipsometry and reflection[J]. LASER TECHNOLOGY, 2022, 46(2): 288-292. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.022
    [2]JIN Long, ZHANG Xingqiang. Characteristics of Airy beam propagating in circular periodic media[J]. LASER TECHNOLOGY, 2019, 43(3): 432-436. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.027
    [3]WANG Junzhen, WANG Yuefeng, BAI Huijun. Diffraction characteristics of longitudinal chirped volume grating based on transfer matrix algorithm[J]. LASER TECHNOLOGY, 2015, 39(1): 61-64. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.012
    [4]HE Shi-kun, LIANG Liang, ZHANG Ling, CAO Jian-jian. Study on optical amplification characteristics of photonic crystal with defect as gain medium[J]. LASER TECHNOLOGY, 2012, 36(3): 368-371.
    [5]ZHANG Zhi-guo, XIONG Mu-di, ZHANG Zeng-bao, JIN Yu-qi. 单驱动变曲率单晶硅反射镜的研究[J]. LASER TECHNOLOGY, 2012, 36(2): 275-279,284. DOI: 10.3969/j.issn.1001-3806.2012.02.035
    [6]TANG Rui, SHEN Xue-ju. 分划板失调对猫眼光学系统反射特性的影响[J]. LASER TECHNOLOGY, 2012, 36(2): 271-274. DOI: 10.3969/j.issn.1001-3806.2012.02.034
    [7]WANG Xin, LUO Bin, PAN Wei, LI Jian-ping. Research of MEMS-based tunable vertical cavity semiconductor optical amplifiers based on transfer matrix[J]. LASER TECHNOLOGY, 2007, 31(6): 630-633.
    [8]WANG Gang, LUO Bin, PAN Wei. Study on optical bandwidth characteristic of vertical cavity semiconductor optical amplifiers[J]. LASER TECHNOLOGY, 2007, 31(2): 137-140.
    [9]XU Jiang-heng, LUO Bin, PAN Wei, JIA Xi-kun, WANG Fan. Optimal design of the gain bandwidth of vertical-cavity semiconductor optical amplifiers based on the couple cavities[J]. LASER TECHNOLOGY, 2006, 30(1): 60-63.
    [10]JIA Xi-kun, LUO Bin, PAN Wei, YAO Hai-feng, CAO Chang-sheng. Research of gain of vertical cavity semiconductor optical amplifiers based on transfer matrix method[J]. LASER TECHNOLOGY, 2005, 29(4): 377-379,406.

Catalog

    Article views (7) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return