HTML
-
为了得到较好的光束合成效果,光束合成装置需要将多路激光光轴相互调平行。定义各路光束光轴与中心路光束光轴的不平行度为θq,q=1, 2, …, 6。这里为了便于计算讨论,假设每路激光光轴与中心路光轴的不平行度均为θ。当各路激光光轴与中心路光轴不平行度θ分别为0μrad, 5μrad, 10μrad, 15μrad, 20μrad, 25μrad时,激光阵列非相干合成远场光斑分布如图 5所示,并将计算得到的非相干合成远场发散角及光束质量β因子填入表 1。当单元光束波前畸变参量gx=gy=0.05,A=0.23,σ=1.0时,单路远场发散角为0.106mrad,光束质量β因子为2.782;当gx=gy=0.05,A=0.20,σ=0.9时,单路远场发散角为0.083mrad,光束质量β值为2.168。
Figure 5. Far-field intensity distribution of incoherent beam combination at different parallel errors (A=0.23, σ=1)
parallel error θ /μrad wave-front distortion(A=0.23, σ=1.0) wave-front distortion(A=0.20, σ=0.9) divergence angle/mrad β divergence angle/mrad β 0 0.114 8.295 0.086 6.250 5 0.114 8.295 0.091 6.590 10 0.122 8.863 0.098 7.159 15 0.125 9.090 0.102 7.386 20 0.130 9.431 0.109 7.954 25 0.138 9.999 0.117 8.522 Table 1. Far-field divergence angle and beam quality of incoherent beam combination at different parallel errors
从图 5和表 1可以看出,随着各路激光光轴与中心路光轴不平行度θ的增大,非相干合成远场能量集中度逐渐降低,远场发散角及光束质量β因子存在不断增大的趋势,非相干合成效果越来越差。这是因为对于非相干合成来说,多路激光之间的不平行主要体现在各路单元光束在远场的偏移。并且可以发现,为了获得较好的非相干合成效果,所期望各路激光的光束质量越好,那么对多路激光之间的平行性要求就越高。
-
7路激光经光束合成装置调平行后,从同一光学口径输出,经石英光楔分光衰减后,再经透镜聚焦在均匀漫反射屏上,光楔透射和反射的无用光束用激光吸收体吸收,实验系统原理图如图 6所示。实验中,7路激光经光束合成装置后最大不平行度分别小于5μrad和10μrad时,CCD采集到的光斑图像如图 7所示。同时,表 2中给出了根据采集到的远场光强分布计算得到的远场发散角及光束质量β因子,以及采用同种排布方式的7路阵列光束模拟计算结果。计算所用参量:单元光束束腰半径w0=13mm,光束中心间距d=32mm,单元光束远场发散角在0.11mrad~0.13mrad。
parallel error θ /μrad experimental results simulated results divergence angle/mrad β divergence angle/mrad β 5 0.120 8.727 0.118 8.636 10 0.128 9.308 0.126 9.147 Table 2. Far-field divergence angle and beam quality of incoherent beam combination
从图 7和表 2可以看到,随着多路激光最大不平行度从5μrad增大到10μrad,非相干合成远场能量集中度明显降低,非相干合成远场发散角及光束质量β因子值均有所增大,并且,实验结果与模拟计算结果较为一致。