Advanced Search
HE Yehuan, ZHANG Enhua, WANG Zhihai, LI Huijian, LI Bin, CHEN Xiang, YUAN Jia, YE Dahua. Analysis of incoherent beam combination effect of fiber lasers[J]. LASER TECHNOLOGY, 2019, 43(6): 829-833. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.018
Citation: HE Yehuan, ZHANG Enhua, WANG Zhihai, LI Huijian, LI Bin, CHEN Xiang, YUAN Jia, YE Dahua. Analysis of incoherent beam combination effect of fiber lasers[J]. LASER TECHNOLOGY, 2019, 43(6): 829-833. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.018

Analysis of incoherent beam combination effect of fiber lasers

More Information
  • Received Date: December 10, 2018
  • Revised Date: March 21, 2019
  • Published Date: November 24, 2019
  • To study the incoherent beam combination characteristics of fiber lasers, a beam combination model of a circular array of multiple fiber lasers was established, and effect of waist radius w0, wave-front distortion of unit beam and beam separation distance on the far field beam quality of incoherent and coherent combination was simulated and analyzed. In addition, the influence of axis parallelism of multiple laser beams on the incoherent beam combination effect was studied, and experimental verification was carried out. The results show that, when the beam separation distance is d0=2.8w0, the beam quality β factor of incoherent combination of multiple laser beams without wave-front distortion is equal to that of coherent combination. The beam separation distance d0 decreases when the wave-front phase of laser beam is distorted, and the influence of wave-front distortion on the incoherent combination is less than that on the coherent combination. With the increasing of the parallel error among multiple laser beams, the beam quality of incoherent combination becomes worse. And the better the beam quality of unit beam is, the higher the demand for the axis parallelism of multiple laser beams. This research can provide references for the design and analysis of beam combination system of fiber lasers.
  • [1]
    REN G G, YI W W, QI Y, et al. U.S. theater and strategic UVA-borne laser weapon[J]. Laser & Optoelectronics Progress, 2017, 54(10):100002(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201710002
    [2]
    ZERVAS M N, CODEMARD C A. High power fiber lasers: A review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5):1-23. http://cn.bing.com/academic/profile?id=b72501123139a61fd419041c1f1211ca&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    YANG Ch Sh, XU Sh H, ZHOU J, et al. Research advance on the key technology of high-power fiber laser materials and components[J]. Scientia Sinica Technologica, 2017, 47(10):1038-1048(in Chinese). DOI: 10.1360/N092016-00437
    [4]
    LOU Q H, ZHOU J, WANG Zh J, et al. Analysis of high-power fiber laser weapons[J]. Laser Technology, 2003, 27(3):161-165(in Ch-inese). https://spectrum.ieee.org/tech-talk/aerospace/military/lockheed-martin-shows-off-highpower-fiber-laser-weapon
    [5]
    WANG X L, ZHOU P, SU R T, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2):0201001 (in Chinese). DOI: 10.3788/CJL201744.0201001
    [6]
    ZHOU P. Study on coherent beam combination technology of fiber lasers[D]. Wuhan: National University of Defense Technology, 2009: 104-105(in Chinese).
    [7]
    DONG H Ch, TAO Ch X, ZHAO Y A, et al. Combination characte-ristics analysis of Gaussian beams[J]. High Power Laser and Particle Beams, 2009, 21(2):171-176(in Chinese).
    [8]
    ZHOU P, LIU Z, XU X, et al. Comparative study on the propagation performance of coherently combined and incoherently combined beams[J]. Optics Communications, 2009, 282(8):1640-1647. DOI: 10.1016/j.optcom.2009.01.011
    [9]
    XIAO R, HOU J, JIANG Z F. Coherent combining of fiber lasers[J]. Laser Technology, 2005, 29(5):516-518(in Chinese). DOI: 10.1364-OE.11.000087/
    [10]
    FLORES A, EHRENREICH T, HOLTEN R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[J]. Proceedings of the SPIE, 2016, 9728:97281Y. http://cn.bing.com/academic/profile?id=0cde2045200f7bb8c3e2fe4eb9a35bc7&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    IPG PHOTONICS CORPORATION. IPG photonics successfully tests world's first 10 kilowatt single-mode production laser[EB/OL]. (2009-06-17)[ 2018-12-10]. https://www.laserfocusworld.com/articles/2009/06/ipg-photonics-offers-worlds-first-10-kw-single-mode-production-laser.html.
    [12]
    SU Y, WAN M. High energy laser system[M]. Beijing: National Defense Industry Press, 2006:14-16(in Chinese).
    [13]
    LAWSON J K, AUERBACH J M, ENGLISH R E, et al. NIF optical specification—the importance of the RMS gradient[J]. Proceedings of the SPIE, 1999, 3932:336-342. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=963333
    [14]
    FU F X, ZHANG B. Effect of wave-front phase distortion correction[J]. High Power Laser and Particle Beams, 2011, 23(2):375-380(in Chinese). DOI: 10.3788/HPLPB20112302.0375
    [15]
    SU Y, WAN M. High energy laser system[M]. Beijing: National Defense Industry Press, 2004:42-44(in Chinese).
    [16]
    HE Y X, LI X Y. Analysis of influence of CCD's nonlinear response characterization on measurement results of focal spot and beam quality[J]. Chinese Journal of Lasers, 2012, 39(4):0408001(in Chinese). DOI: 10.3788/CJL201239.0408001
  • Cited by

    Periodical cited type(5)

    1. 王胜意,丁哲文,郑祥亮,赵春柳. 基于双芯光子晶体光纤的耦合器设计方法. 光学学报. 2024(05): 68-76 .
    2. 王建强,郭征东. 熔融度对熔锥型光纤耦合器特性的影响研究. 通讯世界. 2024(02): 37-39 .
    3. 龙润泽,张昆,张利明,赵鸿. 反向保偏光纤耦合器偏振特性研究. 激光技术. 2023(03): 413-418 . 本站查看
    4. 龙润泽,张昆,张利明. 反向光纤耦合器反向隔离特性研究. 激光杂志. 2022(01): 70-73 .
    5. 江升旭,柳春郁,冷硕,韩晓鹏,杨九如. 基于光纤过耦合器结构的温度应变传感器. 光子学报. 2021(01): 103-110 .

    Other cited types(2)

Catalog

    Article views (3) PDF downloads (5) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return