Advanced Search
YAN Yiguo, YANG Rukun, LI Jianxiang, WU Xueke, ZHANG Yi. Numerical simulation of laser cutting composite anodes for lithium-ion batteries[J]. LASER TECHNOLOGY, 2019, 43(6): 773-778. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.008
Citation: YAN Yiguo, YANG Rukun, LI Jianxiang, WU Xueke, ZHANG Yi. Numerical simulation of laser cutting composite anodes for lithium-ion batteries[J]. LASER TECHNOLOGY, 2019, 43(6): 773-778. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.008

Numerical simulation of laser cutting composite anodes for lithium-ion batteries

More Information
  • Received Date: December 10, 2018
  • Revised Date: January 02, 2019
  • Published Date: November 24, 2019
  • In order to investigate cutting characteristics of negative plate composites, the temperature field of negative plate composite material of the lithium ion battery by laser cutting was numerically simulated based on finite element model. The size of the width and depth of the negative electrode slit was obtained from the temperature field distribution. The effect of laser power, cutting speed and spot radius on the slit width and depth of negative surface material was studied. The results show that, the width of the slit on the surface of the negative electrode increases with the increase of laser power and the radius of the spot. It decreases with the increase of cutting speed. The slit depth increases with the increase of laser power. It decreases with the increase of cutting speed and spot radius. After cutting to the middle copper foil, the change rate of the slit depth is slowing down. The composite structure of the negative electrode material has a significant effect on the depth of the slit. When the power is 170W, the radius of the spot is 47μm, and the cutting speed varies to about 600mm/s, the effect is most obvious. The cutting depth reaches 60μm under this parameter. After breaking through this threshold, the growth rate is increased significantly until the polar plate is completely cut off. The results can provide a reference for laser cutting of lithium ion battery plate composite material.
  • [1]
    PETERSON S B, WHITACRE J F, APT J. Net air emissions from electric vehicles: the effect of carbon price and charging strategies[J]. Environmental Science & Technology, 2011, 45(5):1792-1797. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2b31b81b7b89cea1f643bf00a3829ec
    [2]
    LIAO X, YU J, GAO L.Electrochemical study on lithium iron phosphate/hard carbon lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2012, 16(2):423-428. DOI: 10.1007/s10008-011-1387-7
    [3]
    KOJIMA T, ISHIZU T, HORIBA T, et al. Development of lithium-ion battery for fuel cell hybrid electric vehicle application[J]. Journal of Power Sources, 2009, 189(1):859-863. DOI: 10.1016/j.jpowsour.2008.10.082
    [4]
    SCROSATI B, JVRGEN G. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430. DOI: 10.1016/j.jpowsour.2009.11.048
    [5]
    YANG L X, PENG X F, WANG B X. Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing[J]. International Journal of Heat and Mass Transfer, 2001, 44(23):4465-4473. DOI: 10.1016/S0017-9310(01)00086-2
    [6]
    CENG W M S M. Laser material processing[M]. London, UK:Springer, 2010:21-27.
    [7]
    LEE D, PATWA R, HERFURTH H, et al.High speed remote laser cutting of electrodes for lithium-ion batteries: Anode [J].Journal of Power Sources, 2013, 240:368-380. DOI: 10.1016/j.jpowsour.2012.10.096
    [8]
    PFLEGING W. A review of laser electrode processing for development and manufacturing of lithium-ion batteries[J]. Nanophotonics, 2017, 7(3):549-573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nanoph-2017-0044
    [9]
    SCHMIEDER B. Laser cutting of graphite anodes for automotive lithium-ion secondary batteries: Investigations in the edge geometry and heat-affected zone[C]// Laser-based Micro- & Nanopackaging & A-ssembly Ⅵ. New York, USA: International Society for Optics and Photonics, 2012: 31-56.
    [10]
    KRONTHALER M R, SCHLOEGL F, KURFER J, et al. Laser cutting in the production of lithium ion cells[J]. Physics Procedia, 2012, 39:213-224. DOI: 10.1016/j.phpro.2012.10.032
    [11]
    DEMIR A G, PREVITALI B. Remote cutting of Li-ion battery electrodes with infrared and green ns-pulsed fibre lasers[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(9/12):1557-1568. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdc45710901705ea9e35985effca441c
    [12]
    PFLEGING W. Laser cutting of graphite anodes for automotive lithium-ion secondary batteries: Investigations in the edge geometry and heat-affected zone[J]. Proceedings of the SPIE, 2012, 8244:23-27. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1278044
    [13]
    LEE D, PATWA R, HERFURTH H, et al. Parameter optimization for high speed remote laser cutting of electrodes for lithium-ion batte-ries[J]. Journal of Laser Applications, 2016, 28(2):022006. DOI: 10.2351/1.4942044
    [14]
    KURFER J, WESTERMEIER M, TAMMER C, et al. Production of large-area lithium-ion cells—Preconditioning, cell stacking and quality assurance[J]. CIRP Annals-manufacturing Technology, 2012, 61(1):21-32. DOI: 10.1016/j.cirp.2012.03.121
    [15]
    WANG Y Sh, YANG X Ch, LIU Y J. Temperature field of laser scanning line facula[J]. Chinese Journal of Lasers, 2006, 33(7):981- 986(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg200607025
    [16]
    LIU X X, HUANG R, YAO G, et al. Numerical simulation of the temperature field of laser butt welding of titanium alloy sheet[J]. Laser Technology, 2013, 37(5): 700-704(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201305030
    [17]
    MA J, ZHAO Y, ZHOU F Y, et al. Study on temperature field of materials irradiated by pulse laser based on FEM [J]. Laser & Infrared, 2015, 45 (1): 27-31(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201501006
    [18]
    YILBAS B S, ARIF A F M, ALEEM B J A. Laser cutting of sharp edge: Thermal stress analysis[J]. Optics & Lasers in Engineering, 2010, 48(1):10-19. http://www.sciencedirect.com/science/article/pii/S0143816609000505
    [19]
    DENG D Sh, LIU J H, HU X Y, et al. Steady-state conditions for oxygen assisted lasox laser cutting of thick plates[J]. Laser Technology, 2003, 27(3):178-181(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200303027
    [20]
    NYON K Y, MOKHTAR M, ABDUL-RAHMAN R. Finite element analysis of laser inert gas cutting on Inconel 718[J]. International Journal of Advanced Manufacturing Technology, 2012, 60(9/12):995-1007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3e0d813babe6a92c39183be89d8a0d7
    [21]
    YANG H L, JIN X Zh, XIU T F, et al. Numerical simulation of fiber laser welding of steel /aluminum dissimilar metals[J]. Laser Technology, 2016, 40(4):606-609(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201604031.htm
  • Related Articles

    [1]CHEN Chubang, ZHANG Qiaofen, WU Mingyang, WANG Guitang, WU Liming, DENG Yaohua. Optimization design of self-similar pulse fibers lasers based on dispersion decreasing fibers[J]. LASER TECHNOLOGY, 2025, 49(1): 98-105. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.016
    [2]SHEN Jing, LI Junqi. Study on dispersion compensation schemes based on DPSK of fiber[J]. LASER TECHNOLOGY, 2019, 43(5): 641-645. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.010
    [3]LI Dan, RAO Yunkun, LING Furi. Study on dispersion compensation based on terahertz coherent tomographic imaging system[J]. LASER TECHNOLOGY, 2017, 41(6): 779-783. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.002
    [4]CAO Xue. Optimization of dispersion compensation in optical fiber communication systems[J]. LASER TECHNOLOGY, 2014, 38(1): 101-104. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.022
    [5]DONG Yi, ZHAO Shang-hong, NI Yan-hui, TIAN Xiao-fei, JIANG Fu-wei. 3阶色散对相位整形不归零码传输性能的影响[J]. LASER TECHNOLOGY, 2012, 36(2): 243-246. DOI: 10.3969/j.issn.1001-3806.2012.02.026
    [6]FAN Zhe, WEN Guang-qian, ZHOU Hui, XIAO Jiang-nan, CHEN Lin. Research on dispersion compensation for OFDM signal fiber transmission[J]. LASER TECHNOLOGY, 2011, 35(1): 112-116. DOI: 10.3969/j.issn.1001-3806.2011.01.031
    [7]WANG Run-xuan. Numerical study on dual-core photonic crystal fiber for dispersion compensation[J]. LASER TECHNOLOGY, 2008, 32(6): 576-578,589.
    [8]ZHAO Chao-feng, LU Xun, LUO Shao-peng. Numerical analysis of quasi-soliton propagation properties using dispersion compensation[J]. LASER TECHNOLOGY, 2007, 31(1): 15-17.
    [9]Li Lin, Cai Hai-wen, Zhao Ling, Fang Zu-jie, Chen Gao-ting. Progress of tunable dispersion compensation[J]. LASER TECHNOLOGY, 2002, 26(3): 194-197.
    [10]Zhou Zhiqiang, Tang Yuliang, Xie Chongjin. Optimum schemes of dispersion compensation transmission systems using dispersion compensation fibers[J]. LASER TECHNOLOGY, 2000, 24(5): 265-269.

Catalog

    Article views (2) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return