Advanced Search
ZHOU Mengwei, REN Siyuan, ZHU Yiqing, YAO Xiaotian. Study on fused biconical taper broadband couplers[J]. LASER TECHNOLOGY, 2019, 43(6): 757-762. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.005
Citation: ZHOU Mengwei, REN Siyuan, ZHU Yiqing, YAO Xiaotian. Study on fused biconical taper broadband couplers[J]. LASER TECHNOLOGY, 2019, 43(6): 757-762. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.005

Study on fused biconical taper broadband couplers

More Information
  • Received Date: December 07, 2018
  • Revised Date: December 23, 2018
  • Published Date: November 24, 2019
  • To explore characteristics of asymmetric couplers, a broadband coupler was fabricated by using two optical fibers with different refractive index. The distribution of optical field of fiber couplers with different refractive index differences and the curve of output optical power with stretching length were simulated by numerical calculation. Bandwidth difference between two broadband couplers and the influence of melting degree on power conversion ratio were analyzed. The theoretical bandwidth was obtained by simulation based on the beam propagation method. The results show that, the coupling power conversion ratio varies with the asymmetry of two optical fibers. When the power conversion ratio is adjusted to the splitting ratio of the coupler, the bandwidth of the coupler is the widest. The melting degree can regulate the beam splitting ratio of broadband couplers. The wavelength response of 3dB fiber coupler in C+L band is gentle. The bandwidth range is 150nm. The bandwidth ranges of couplers with beam splitting ratios of 3:7 and 1:9 are 210nm and 330nm, respectively. The bandwidth range of the coupler with beam splitting ratio of 1:99 is 420nm. The results provide a reference for the fabrication of asymmetric broadband couplers.
  • [1]
    XU H F, WANG Ch J, WANG Y H, et al. Two methods of improving characteristics for symmetric dual-core photonic crystal fibers cou-plers[J]. Laser Technology, 2012, 36(3):372-374(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201203023.htm
    [2]
    XU F, YE Y, ZHANG J, et al. Optimum of model of dual-core photonic crystal fiber coupler[J]. Laser Technology, 2009, 33(3):259-261(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200903003
    [3]
    YOON M S, LEE S B, HAN Y G. Development of a ultra broadband optical coupler based on a photonic crystal fiber[J]. Korean Journal of Optics and Photonics, 2010, 21(5):1257-1270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JAKO201030560145221
    [4]
    REYES-VERA E, USUGA-RESTREPO J, JIMÉNEZ-DURANGO C, et al. Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter[J]. IEEE Photonics Journal, 2018, 10(4): 1-13. http://cn.bing.com/academic/profile?id=95cd5dd4d3516a38eadadd129e1fafde&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    GONZÁLEZ-ANDRADE D, WANGVEMERT-PÉREZ J G, VELASCO A V, et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures[J]. IEEE Photonics Journal, 2018, 10(2): 1-10. http://ieeexplore.ieee.org/document/8326504/
    [6]
    JIA W Q, CHEN J R, ZHANG X Y, et al. A modified Ka-band broadband coupler design[J]. Electronic Components and Materials, 2014, 33(9):72-74(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-DZAL201409028.htm
    [7]
    JUNG S Ch, YANG Y G. Miniaturized branch-line hybrid coupler with broadband impedance matching network[J]. Journal of Electromagnetic Waves and Applications, 2013, 27(10):1230-1237. DOI: 10.1080/09205071.2013.805168
    [8]
    QAMAR Z, ZHENG S Y, CHAN W S, et al. Coupling coefficient range extension technique for broadband branch-line coupler[J]. Journal of Electromagnetic Waves and Applications, 2017, 32(7):1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/09205071.2017.1369906
    [9]
    ZHANG R F, GE Ch F, WANG Sh H, et al. Fused biconical taper all-wave coupler [J]. Acta Physica Sinica, 2003, 52(2): 390-394 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb200302027
    [10]
    CAO X, YU Y L, CHEN X F, et al. Development and characteristic analysis of C+L band melt cone broadband coupler[J]. Journal of Natural Science of Heilongjiang University, 2007, 24(3):353-356(in Chinese). http://ieeexplore.ieee.org/abstract/document/4263772/
    [11]
    GU B Sh. Study on wide band characteristic of fused fibercouplers[J]. Acta Optica Sinica, 1995, 15(5):610-615(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXXB505.019.htm
    [12]
    GU B Sh. Study on 3dB wideband fiber coupler using two-stage waveguide model[J]. Acta Optica Sinica, 1994, 14(2):187-192(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXXB402.017.htm
    [13]
    CHEN Zh Y, SHEN Y Q, WANG T Y, et al. Super flatwideband single mode optical fiber couplers ranged from 1250nm to 1650nm[J].Acta Optica Sinica, 2004, 24(5):663-667(in Chinese).
    [14]
    SNYDER A W, LOVE J D. Optical waveguide theory[M]. Beijing: People Posts and Telecom Press, 1991:698-699 (in Chinese).
    [15]
    FENG D, LI Zh, TANG D. Model of 2×2 fused tapered single-mode-fiber coupler [J]. Acta Photonica Sinica, 2003, 32(1): 1316-1320 (in Chinese).
    [16]
    REN J G, HU Y M, ZHANG X L, et al. A united model of fused single-mode fiber coupler[J]. Semiconductor Optoelectronics, 2011, 32(1):18-23(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bdtgd201101005
    [17]
    DING R, ZHU Y Q, YAO X T. The analogue simulation of the optical microfiber coupler on fused Drawing[J]. Laser Technology, 2018, 42(4):462-465(in Chinese). http://www.jgjs.net.cn/EN/Y2018/V42/I4/462
    [18]
    MIAO P P, ZHU Y Q, WANG J, et al. The simulation and experimental study of drawing process of fused fiber coupler[J]. Acta Photonica Sinica, 2015, 44(9):113-117(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gzxb201509020
  • Cited by

    Periodical cited type(5)

    1. 王胜意,丁哲文,郑祥亮,赵春柳. 基于双芯光子晶体光纤的耦合器设计方法. 光学学报. 2024(05): 68-76 .
    2. 王建强,郭征东. 熔融度对熔锥型光纤耦合器特性的影响研究. 通讯世界. 2024(02): 37-39 .
    3. 龙润泽,张昆,张利明,赵鸿. 反向保偏光纤耦合器偏振特性研究. 激光技术. 2023(03): 413-418 . 本站查看
    4. 龙润泽,张昆,张利明. 反向光纤耦合器反向隔离特性研究. 激光杂志. 2022(01): 70-73 .
    5. 江升旭,柳春郁,冷硕,韩晓鹏,杨九如. 基于光纤过耦合器结构的温度应变传感器. 光子学报. 2021(01): 103-110 .

    Other cited types(2)

Catalog

    Article views (2) PDF downloads (8) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return