[1]
|
LIU D P, CHEN P D. Analysis on several detection techniques for atomization effects[J]. Process Automation Instrumentation, 2012, 33(8):1-4(in Chinese). |
[2]
|
LIU J, XU X. Research progress of transverse liquid jet atomization in high-speed airflow[J].Advances in Mechanics, 2009, 39(3):273-283(in Chinese). |
[3]
|
ASHGRIZ N, YARIN A L, YARIN A L, et al. Handbook of atomization and sprays[M].New York, USA: Springer US, 2011:18-25. |
[4]
|
ZHU Zh B, SU M X, CAI X S. Research on particle size measurement by laser light scattering based on array CCD[J]. Optical Instruments, 2017, 40(3):1-7 (in Chinese). |
[5]
|
LIU J. Experimental and numerical simulation of the breakup process of swirling conical liquid sheet[D]. Changsha: National University of Defense Technology, 2012: 33-48(in Chinese). |
[6]
|
WU M R, YANG X B, XIONG D X, et al. Principle of structural illumination fluorescence microscope breaking through diffraction limit and its application in life science[J]. Advances in Laser and Photoelectronics, 2015, 52(1):10003(in Chinese). |
[7]
|
BREUNINGER T, GREGER K, STELZER E H. Lateral modulation boosts image quality in single plane illumination fluorescence microscopy[J]. Optics Letters, 2007, 32(13):1938-1940. doi: 10.1364/OL.32.001938 |
[8]
|
MISHRA Y, KRISTENSSON E, ALDÉN M, et al. Droplet size and concentration mapping in sprays using slipi based techniques[C]//Combustion Physics: 26th Annual Conference on Liquid Atomization and Spray Systemsm, 2014. Lund, Sweden: Lund University Publications, 2014: 5471234. |
[9]
|
KRISTENSSON E. Structured laser illumination planar imaging SLIPI applications for spray diagnostics[D]. Lund, Sweden: Lund University, 2012: 61-65. |
[10]
|
DAI Y X. Research of structured laser illumination planar imaging based on DMD technology application for spray diagnostics[D]. Harbin: Harbin Engineering University, 2017: 9-24(in Chinese). |
[11]
|
LIN K C, KENNEDY P J, JACKSON T A. Structures of water jets in a mach 1.94 supersonic crossflow[C]//The 42nd AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings 2004. Reston, Virginia, USA: AIAA, 2004: 971. |
[12]
|
XIE J, GAN Z W, DUAN F, et al. Characterization of spray atomization and heat transfer of pressure swirl nozzles[J]. International Journal of Thermal Sciences, 2013, 68: 94-102. doi: 10.1016/j.ijthermalsci.2012.12.015 |
[13]
|
WU L Y. Breakup and atomization mechanism of liquid jet in supersonic crossflows[D]. Changsha: National University of Defense Technology, 2016: 80-95(in Chinese). |
[14]
|
WANG D, ZHOU J, LIN Zh Y. Experimental investigation on operating characteristics of two-phase continuous rotating detonation combustor fueled by kerosene[J]. Journal of Propulsion Technology, 2017, 38(2):471-480(in Chinese). |
[15]
|
ZHANG Zh X. Study on the laser drop sizing of kerosene injected into a supersonic airstream by PLIF/Mie dual spectrum[D]. Hefei: University of Science and Technology of China, 2014: 48-50(in Chinese). |
[16]
|
WANG D Zh, HUANG Zh. Application of laser technology in fuel spray testing[J]. Laser Technology, 1995, 19(1):26-34(in Chinese). |
[17]
|
CHEN L, LE J L, SONG W Y, et al. Experimental and numerical simulation of jet atomization in supersonic flow[J]. Experimental Fluid Mechanics, 2011, 25(2):29-34(in Chinese). |
[18]
|
YANG Sh H. Experimental and numerical simulation of jet atomization in supersonic flow[D]. Hefei: University of Science and Technology of China, 2010: 58-60(in Chinese). |
[19]
|
DESHMUKH D. A method for measurement of planar liquid volume fraction in dense sprays[J]. Experimental Thermal and Fluid Science, 2013, 46(4):254-258. |
[20]
|
KANNAIYAN K, VAIDYANATHAN A. Design and characterization of liquid centered swirl-coaxial injector[M].New York, USA: Springer, 2017:34-42. |
[21]
|
KANNAIYAN K, BANDA M V K, VAIDYANATHAN A. Planar sauter mean diameter measurements in liquid centered swirl coaxial injector using laser induced Fluorescence, Mie scattering and laser diffraction techniques[J]. Acta Astronautica, 2016, 123:257-270. doi: 10.1016/j.actaastro.2016.03.011 |
[22]
|
JIANG H Y. Improving rainbow scattering measurement technique for the key parameters of droplets and its online applications[D]. Hangzhou: Zhejiang University, 2017: 15-33(in Chinese). |
[23]
|
WU Y Ch, PROMVONGSA J, WU X Ch, et al. One-dimensional rainbow technique using Fourier domain filtering[J]. Optics Express, 2015, 23(23):30545. doi: 10.1364/OE.23.030545 |
[24]
|
WU X, WU Y, SAENGKAEW S, et al. Concentration and composition measurement of sprays with a global rainbow technique[J]. Measurement Science & Technology, 2012, 23(12):56-56. |
[25]
|
WU Y Ch, WU X Ch, SAWITREE S, et al. Concentration and size measurements of sprays with global rainbow technique[J]. Acta Physica Sinica, 2013, 62(9): 76-83(in Chinese). |
[26]
|
LIU H Y, CAO K L, LI C, et al. Experimental study on one dimensional full field rainbow spray measurement method[J]. Optical Technique, 2017, 43(3):217-221(in Chinese). |