Citation: | ZHAO Jiafeng, NIE Wansheng, LIN Wei, SU Lingyu, TONG Yiheng. Research progress of optical measurement of particle size in spray[J]. LASER TECHNOLOGY, 2019, 43(5): 702-707. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.022 |
[1] |
LIU D P, CHEN P D. Analysis on several detection techniques for atomization effects[J]. Process Automation Instrumentation, 2012, 33(8):1-4(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhyb201208001
|
[2] |
LIU J, XU X. Research progress of transverse liquid jet atomization in high-speed airflow[J].Advances in Mechanics, 2009, 39(3):273-283(in Chinese).
|
[3] |
ASHGRIZ N, YARIN A L, YARIN A L, et al. Handbook of atomization and sprays[M].New York, USA: Springer US, 2011:18-25.
|
[4] |
ZHU Zh B, SU M X, CAI X S. Research on particle size measurement by laser light scattering based on array CCD[J]. Optical Instruments, 2017, 40(3):1-7 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxyq201803001
|
[5] |
LIU J. Experimental and numerical simulation of the breakup process of swirling conical liquid sheet[D]. Changsha: National University of Defense Technology, 2012: 33-48(in Chinese).
|
[6] |
WU M R, YANG X B, XIONG D X, et al. Principle of structural illumination fluorescence microscope breaking through diffraction limit and its application in life science[J]. Advances in Laser and Photoelectronics, 2015, 52(1):10003(in Chinese).
|
[7] |
BREUNINGER T, GREGER K, STELZER E H. Lateral modulation boosts image quality in single plane illumination fluorescence microscopy[J]. Optics Letters, 2007, 32(13):1938-1940. DOI: 10.1364/OL.32.001938
|
[8] |
MISHRA Y, KRISTENSSON E, ALDÉN M, et al. Droplet size and concentration mapping in sprays using slipi based techniques[C]//Combustion Physics: 26th Annual Conference on Liquid Atomization and Spray Systemsm, 2014. Lund, Sweden: Lund University Publications, 2014: 5471234.
|
[9] |
KRISTENSSON E. Structured laser illumination planar imaging SLIPI applications for spray diagnostics[D]. Lund, Sweden: Lund University, 2012: 61-65.
|
[10] |
DAI Y X. Research of structured laser illumination planar imaging based on DMD technology application for spray diagnostics[D]. Harbin: Harbin Engineering University, 2017: 9-24(in Chinese).
|
[11] |
LIN K C, KENNEDY P J, JACKSON T A. Structures of water jets in a mach 1.94 supersonic crossflow[C]//The 42nd AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings 2004. Reston, Virginia, USA: AIAA, 2004: 971.
|
[12] |
XIE J, GAN Z W, DUAN F, et al. Characterization of spray atomization and heat transfer of pressure swirl nozzles[J]. International Journal of Thermal Sciences, 2013, 68: 94-102. DOI: 10.1016/j.ijthermalsci.2012.12.015
|
[13] |
WU L Y. Breakup and atomization mechanism of liquid jet in supersonic crossflows[D]. Changsha: National University of Defense Technology, 2016: 80-95(in Chinese).
|
[14] |
WANG D, ZHOU J, LIN Zh Y. Experimental investigation on operating characteristics of two-phase continuous rotating detonation combustor fueled by kerosene[J]. Journal of Propulsion Technology, 2017, 38(2):471-480(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201702028
|
[15] |
ZHANG Zh X. Study on the laser drop sizing of kerosene injected into a supersonic airstream by PLIF/Mie dual spectrum[D]. Hefei: University of Science and Technology of China, 2014: 48-50(in Chinese).
|
[16] |
WANG D Zh, HUANG Zh. Application of laser technology in fuel spray testing[J]. Laser Technology, 1995, 19(1):26-34(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214593774
|
[17] |
CHEN L, LE J L, SONG W Y, et al. Experimental and numerical simulation of jet atomization in supersonic flow[J]. Experimental Fluid Mechanics, 2011, 25(2):29-34(in Chinese).
|
[18] |
YANG Sh H. Experimental and numerical simulation of jet atomization in supersonic flow[D]. Hefei: University of Science and Technology of China, 2010: 58-60(in Chinese).
|
[19] |
DESHMUKH D. A method for measurement of planar liquid volume fraction in dense sprays[J]. Experimental Thermal and Fluid Science, 2013, 46(4):254-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dfa0ef164e8112ac677703864c45565
|
[20] |
KANNAIYAN K, VAIDYANATHAN A. Design and characterization of liquid centered swirl-coaxial injector[M].New York, USA: Springer, 2017:34-42.
|
[21] |
KANNAIYAN K, BANDA M V K, VAIDYANATHAN A. Planar sauter mean diameter measurements in liquid centered swirl coaxial injector using laser induced Fluorescence, Mie scattering and laser diffraction techniques[J]. Acta Astronautica, 2016, 123:257-270. DOI: 10.1016/j.actaastro.2016.03.011
|
[22] |
JIANG H Y. Improving rainbow scattering measurement technique for the key parameters of droplets and its online applications[D]. Hangzhou: Zhejiang University, 2017: 15-33(in Chinese).
|
[23] |
WU Y Ch, PROMVONGSA J, WU X Ch, et al. One-dimensional rainbow technique using Fourier domain filtering[J]. Optics Express, 2015, 23(23):30545. DOI: 10.1364/OE.23.030545
|
[24] |
WU X, WU Y, SAENGKAEW S, et al. Concentration and composition measurement of sprays with a global rainbow technique[J]. Measurement Science & Technology, 2012, 23(12):56-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=621676b64de33f1c5881162313a1339a
|
[25] |
WU Y Ch, WU X Ch, SAWITREE S, et al. Concentration and size measurements of sprays with global rainbow technique[J]. Acta Physica Sinica, 2013, 62(9): 76-83(in Chinese).
|
[26] |
LIU H Y, CAO K L, LI C, et al. Experimental study on one dimensional full field rainbow spray measurement method[J]. Optical Technique, 2017, 43(3):217-221(in Chinese).
|