HTML
-
由于原始光谱的起始端和末端有较大的噪声,为了消除噪声的影响,选择波长204.7nm~997.6nm为有效的光谱区域,该区域有1024个波段,去除噪声的苹果疤痕区域和正常区域的光谱反射率曲线如图 3所示。其中图 3a为200个苹果样本的光谱反射率,图 3b为苹果表面疤痕区域和正常区域的平均光谱反射率曲线。整体上来看,完好无损和表面具有疤痕苹果的平均光谱曲线的变化趋势基本一致,在400nm~700nm波段内,光谱反射率呈现出由低→高→低的趋势,即在蓝光波段430nm~500nm低,黄绿波段520nm~590nm高,橙红波段600nm~680nm低[19]。在680nm~710nm波段内急剧上升,在720nm~930nm波段内平均光谱反射率较高,在930nm~1000nm波段出现吸收谷。在450nm和675nm处具有明显的吸收峰,主要由苹果表面叶绿素的吸收引起的,反映了苹果的表面颜色信息,而980nm处的吸收峰则主要由苹果中的水分吸收所引起的,反映了苹果的水分含量信息[20]。然而,由于完好无损和表面具有疤痕苹果表面叶绿素含量以及水分含量的不同,导致完好无损和表面具有疤痕苹果的平均光谱反射率在400nm~1000nm波段内存在较大的差异。因此, 根据此光谱差异建立识别模型进而识别苹果表面疤痕。
-
在建立识别模型之前需对原始光谱数据进行预处理,以减少噪声的干扰,提高模型的识别准确率和稳定性。本实验中分别采用了两种光谱预处理方法(SNV和1阶导数)来消除原始光谱数据中的噪声,获得更高信噪比的光谱,以助于后续建立识别模型的稳健性和识别结果的扩展性。经过SNV和1阶导数处理后的光谱反射率曲线如图 4所示。将获得预处理后的光谱数据导入MATLAB软件中建立相关模型。
-
将SNV和1阶导数处理后的光谱数据进一步经PCA变换后的第一主成分和第二主成分2维平面分布图如图 5所示。从图中可以发现, 除个别样本是分散开的,总体上分为两类(如图中实线和虚线所示),具有较好的分类结果。经PCA变换后的前8个主成分(P1~P8)得分的贡献率及其累计贡献率见表 1。从表 1可以看出, 前8个主成分(P1~P8)的累计贡献率为99.21%,即可表达99%以上的原始光谱数据的信息。因此,为了提高识别模型的识别准确率,将前8个主成分(P1~P8)作为样本集特征光谱,很好地实现了光谱数据的降维,提高了模型的识别效率。
principal component P1 P2 P3 P4 P5 P6 P7 P8 contribution rate /% 55.63 31.59 5.86 3.54 2.27 0.55 0.45 0.32 cumulative contribution rate /% 55.63 87.22 93.08 96.62 97.89 98.44 98.89 99.21 Table 1. Contribution rate of principal component score
-
结合不同的光谱预处理方法以及PCA变换,建立KNN和PLS-DA识别模型,分别对200个实验样本进行识别检测,检测结果见表 2。从表 2可以看出,经过SNV和1阶导数预处理后建立的两种识别模型对校正集和预测集中样本的识别正确率均在92.0%以上,且KNN识别模型的整体识别性能要优于PLS-DA识别模型,其中1阶导数+KNN识别模型对校正集中正常果和疤痕果正确检出144个,正确率高达96.0%,而SNV+KNN识别模型对预测集中正常果和疤痕果正确检出48个,正确率高达96.0%;整体上来看,1阶导数光谱预处理方法具有较好的建模效果,SNV光谱预处理方法具有较好的预测效果。另外,两种识别模型都误将校正集和预测集中的疤痕果识别为正常果,误检的主要原因是部分苹果表面有疤痕的区域较小,利用光纤光谱采集系统收集表面有疤痕区域苹果样本的光谱反射率包含了部分正常区域,为了提高识别正确率,以后要联合多种识别方法完成对水果表面疤痕的检测。
discriminant models calibration set (150) prediction set (50) number rate/% number rate/% derivative+KNN 144 96.0 46 92.0 SNV+KNN 141 94.0 48 96.0 derivative+PLS-DA 142 94.7 46 92.0 SNV+PLS-DA 140 93.3 47 94.0 Table 2. Discriminant results of KNN and PLS-DA models