Advanced Search
JIANG Jinhong, LI Yongqi, LÜ Huanzhu, JIN Qi, ZHANG Kefei. Coupling structure of truncated wedge-shaped optical microlens based on DFB laser[J]. LASER TECHNOLOGY, 2019, 43(5): 655-659. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.013
Citation: JIANG Jinhong, LI Yongqi, LÜ Huanzhu, JIN Qi, ZHANG Kefei. Coupling structure of truncated wedge-shaped optical microlens based on DFB laser[J]. LASER TECHNOLOGY, 2019, 43(5): 655-659. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.013

Coupling structure of truncated wedge-shaped optical microlens based on DFB laser

More Information
  • Received Date: November 11, 2018
  • Revised Date: January 02, 2019
  • Published Date: September 24, 2019
  • In order to overcome the limitation of maximum coupling efficiency in the coupling package of optical emission sub-modules of distributed feedback laser lasers, the wedge-shaped truncated optical fiber microlens was used to replace the discrete lens in direct coupling scheme.A wedge-shaped truncated end-face model with inclined angle of 0.6rad, coupling distance of 60μm and half-width of 15μm was obtained. On this basis, compared with discrete and direct coupling, longitudinal, transverse and angular migration errors were discussed.The results show that, when longitudinal coupling distance is -21.45μm~56.79μm and angular coupling angle ranges from -8.3°~8.5°, the coupling efficiency is always greater than 70%. The overall tolerance of structure is high and the coupling efficiency is 84.40%.This research can provide a new solution of secondary emission module of coupling package device for the next generation distributed feedback lasers.
  • [1]
    XING J, RONG W, SUN D, et al. Extrusion printing for fabrication of spherical and cylindrical microlens arrays[J]. Applied Optics, 2016, 55(25):6947. DOI: 10.1364/AO.55.006947
    [2]
    ZOU H, HUANG H, CHEN S, et al. Laser printed fiber microlens for fiber-diode coupling by direct laser writing.[J]. Applied Optics, 2014, 53(36):8444-8448. DOI: 10.1364/AO.53.008444
    [3]
    YEH S M, HUANG S Y, CHENG W H. A new scheme of conical-wedge-shaped fiber endface for coupling between high-power laser diodes and single-mode fibers[J]. Journal of Lightwave Technology, 2005, 23(4):1781-1786. DOI: 10.1109/JLT.2005.844511
    [4]
    MUKHOPADHYAY S, GANGOPADHYAY S, SARKAR S N. Coupling of a laser diode to monomode elliptic core fiber via upside down tapered microlens on the fiber tip: Estimation of coupling efficiency with consideration for possible misalignments by ABCD matrix forma-lism[J]. Optik—International Journal for Light and Electron Optics, 2010, 121(2):142-150. DOI: 10.1016/j.ijleo.2008.06.001
    [5]
    DAS B, MAITI A K, GANGOPADHYAY S. Excitation of single-mode circular core parabolic index fiber by laser diode via upside down tapered hemispherical microlens on the tip of the fiber: Estimation of coupling efficiency by application of ABCD matrix formalism[J]. Journal of Optical Communications, 2014, 35(2):95-100. https://www.researchgate.net/publication/274355586_Excitation_of_Single-mode_Circular_Core_Parabolic_Index_Fiber_by_Laser_Diode_via_Upside_Down_Tapered_Hemispherical_Microlens_on_the_Tip_of_the_Fiber_Estimation_of_Coupling_Efficiency_by_Application_of
    [6]
    LU Y K, TSAI Y C, LIU Y D, et al. Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes[J]. Optics Express, 2007, 15(4):1434-1442. DOI: 10.1364/OE.15.001434
    [7]
    HAN Y B. Research on fiber laser microlens coupling technology of semiconductor laser [D]. Changchun: Changchun University of Science and Technology, 2008: 71-86(in Chinese).
    [8]
    WU C C, TSENG Y D, KUO S M, et al. Fabrication of asperical lensed optical fibers with an electro-static pulling of SU-8 photoresist[J]. Optics Express, 2011, 19(23):22993-22998. DOI: 10.1364/OE.19.022993
    [9]
    CHEN J L, SHEEN M T, HSIEH W H, et al. New scheme of hyperboloid microlens for high-average and high-yield coupling, high-power lasers to single-mode fibers[J]. Journal of Lightwave Technology, 2013, 31(11):1681-1686. DOI: 10.1109/JLT.2013.2256337
    [10]
    LIN C H, LIU C N, LEI S C, et al. Micro-hyperboloid lensed fibers for efficient coupling from laser chips[J]. Optics Express, 2017, 25(20):24480-24485. DOI: 10.1364/OE.25.024480
    [11]
    ZHANG L, ZENG Y, CHEN G Q, et al. Study on energy distribution characteristics of wedge-shaped micro/nano fiber[J]. Laser Technology, 2015, 39(5):689-693(in Chinese).
    [12]
    YIN Zh, LIU G D, LIU B G, et al. Research on the objective function of spatial light modulator-based output spot focusing for multimode fiber[J]. Chinese Journal of Lasers, 2015, 42(7):0705003(in Chinese). DOI: 10.3788/CJL201542.0705003
    [13]
    YIN Z Y, WANG Y F, YIN S Y, et al. Design of semiconductor laser shaping system based on hyperbola substrate microlens array[J]. Chinese Journal of Lasers, 2013, 40(6):0602016(in Chinese). DOI: 10.3788/CJL201340.0602016
    [14]
    HASHIM A, BAMIEDAKIS N, BEALS I V J, et al. Cost-effective 10Gb/s polymer-based chip-to-chipoptical interconnect[J]. The Institution of Engineering and Technology, 2012, 6(3): 140-146. https://www.researchgate.net/publication/260357638_Cost-effective_10_Gbs_polymer-based_chip-to-chip_optical_interconnect
    [15]
    LIM K S, PARK H J. Fully passive-alignment pluggable compact parallel optical interconnection modules based on a direct-butt-coupling structure for fiber-optic applications[J]. Optical Engineering, 2016, 55(2):026107. DOI: 10.1117/1.OE.55.2.026107
    [16]
    WANG K L, LIU Y L, CHEN H B, et al. Linewidth measurement of DFB laser with frequency shift delay and heterodyne method[J]. Laser Technology, 2018, 42(5):633-637(in Chinese).
    [17]
    YIN G, LOU S, LI Q, et al. Theory analysis of mode coupling in tilted long period fiber grating based on the full vector complex coupled mode theory[J]. Optics & Laser Technology, 2013, 48(6):60-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d8f6e1192276b71b586cfd1955cc466

Catalog

    Article views (8) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return