Advanced Search
GUO Chunfu, ZHANG Chuanwei, LI Weiqi, LI Xiaoping, LIU Shiyuan. Ellipsometric characterization of the thickness of gradient dielectric films on PET composite substrates[J]. LASER TECHNOLOGY, 2019, 43(4): 585-590. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.026
Citation: GUO Chunfu, ZHANG Chuanwei, LI Weiqi, LI Xiaoping, LIU Shiyuan. Ellipsometric characterization of the thickness of gradient dielectric films on PET composite substrates[J]. LASER TECHNOLOGY, 2019, 43(4): 585-590. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.026

Ellipsometric characterization of the thickness of gradient dielectric films on PET composite substrates

More Information
  • Received Date: December 03, 2018
  • Revised Date: April 07, 2019
  • Published Date: July 24, 2019
  • In order to monitor the film thickness of polyethylene terephthalate (PET) composite substrate on 3-D glass, modeling analysis method of PET composite substrates equivalent to single-layer substrates was adopted. The thickness measurement of titanium dioxide gradient refractive index material thin films on complex substrates was realized by ellipsometry. The result show that, the thickness of titanium dioxide gradient refractive index films on PET composite substrates is 212.48nm by this method. The results of scanning electron microscopy is 211nm. The result is very accurate. The equivalent substrate method is validated by taking titanium dioxide as an example. The method is also applicable to other dielectric films. This method can measure and characterize the thickness of titanium dioxide thin films on PET composite substrates with high accuracy, and is of great significance for monitoring the coating process.
  • [1]
    JELLISON G E, HUNN J D, LOWDEN R A. Optical characterization of tristructural isotropic fuel particle cross-sections using generalized ellipsometry[J]. Journal of Nuclear Materials, 2006, 352(1):6-12. http://cn.bing.com/academic/profile?id=556e8ac7454d895510d530a196c70174&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    JELLISON G E. Generalized ellipsometry for materials characterization[J]. Thin Solid Films, 2004, 450(1):42-50. DOI: 10.1016/j.tsf.2003.10.148
    [3]
    LOUIS B, KRINS N, FAUSTINI M, et al. Understanding crystallization of anatase into binary SiO2/TiO2 sol-gel optical thin films: An in situ thermal ellipsometry analysis[J]. Journal of Physical Chemistry, 2011, C18(1):15-37. https://www.researchgate.net/publication/231743345_Understanding_Crystallization_of_Anatase_into_Binary_SiO2TiO2_Sol-Gel_Optical_Thin_Films_An_in_Situ_Thermal_Ellipsometry_Analysis
    [4]
    CAMACHOLOPEZ M A, SANCHEZPEREZ C A, ESPARZAGARCIA A, et al. Optical properties of TiO2-x thin films studied by spectroscopic ellipsometry: substrate temperature effect[J]. Proceedings of the SPIE, 2004, 5622:545-550. https://www.researchgate.net/publication/261007593_Optical_properties_of_TiO_2-x_thin_films_studied_by_spectroscopic_ellipsometry_Substrate_temperature_effect
    [5]
    BABONAS G J, NIILISK A, REZA A, et al. Spectroscopic ellipso-metry of TiO2/Si[J]. Proceedings of the SPIE, 2003, 5122:50-55.
    [6]
    VERG H L M, MALKOMES N, STAEDLER T, et al. Ex situ and in situ spectroscopic ellipsometry of MF and DC-sputtered TiO2 and SiO2 films for process control[J]. Thin Solid Films, 1999, 351(1):42-47. https://www.sciencedirect.com/science/article/pii/S0040609099001522
    [7]
    YU G, WATANABE J, KRISHNA K M, et al. Determination of optical constants of solgel-derived inhomogeneous TiO2 thin films by spectroscopic ellipsometry and transmission spectroscopy[J]. Applied Optics, 1998, 37(4):691-697. DOI: 10.1364/AO.37.000691
    [8]
    ZHAO B X. The TiO2 light trapping films for solar cells [D]. Changsha: Central South University, 2012: 1-100 (in Chinese).
    [9]
    CALLARD S, GAGNAIRE A, JOSEPH J. Characterization of graded refractive index silicon oxynitride thin films by spectroscopic ellipso-metry[J]. Thin Solid Films, 1998, 313/314(1/2):384-388. http://cn.bing.com/academic/profile?id=726ec32e478deafff71e1ecbe803b10b&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    FUJIWARA H, KOH J, COLLINS R W. Depth-profiles in compositionally-graded amorphous silicon alloy thin films analyzed by real time spectroscopic ellipsometry[J]. Thin Solid Films, 1998, 313/314(1/2):474-478. http://cn.bing.com/academic/profile?id=e348c85d883707c52e6f82c0c1dcc01f&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    JELLISON G E. The calculation of thin film parameters from spectroscopic ellipsometry data[J]. Thin Solid Films, 1996, 290/291:40-45. DOI: 10.1016/S0040-6090(96)09009-8
    [12]
    FUJIWARA H. Spectroscopic ellipsometry: principles and applications[M]. Hoboken, New Jersey, USA: John Wiley & Sons, 2007:1-369.
    [13]
    TOMPKINS H G, IRENE E A. Handbook of ellipsometry[M]. Berlin, Germany: Springer, 2005:481-566.
    [14]
    LI W, JIANG H, ZHANG C, et al. Characterization of curved surface layer by Mueller matrix ellipsometry[J]. Journal of Vacuum Science & Technology, 2016, B34(2): 020602. http://cn.bing.com/academic/profile?id=12ed05bc80f5050bfbc14f70035c92fb&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    LI W, ZHANG C, JIANG H, et al. Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry[J]. Journal of Optics, 2016, 18(5):55701. DOI: 10.1088/2040-8978/18/5/055701
    [16]
    CHEN X, JIANG H, ZHANG C, et al. Towards understanding the detection of profile asymmetry from Mueller matrix differential decomposition[J]. Journal of Applied Physics, 2015, 118(22): 225308. DOI: 10.1063/1.4937558
    [17]
    LIU S, CHEN X, ZHANG C. Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology[J]. Thin Solid Films, 2015, 584:176-185. DOI: 10.1016/j.tsf.2015.02.006
    [18]
    CHEN X G, LIU Sh Y, ZHANG Ch W, et al. Accurate characte-rization of nanoimprinted resist patterns using Mueller matrix ellipsometry[J]. Optics Express, 2014, 22(12):15165-15177. DOI: 10.1364/OE.22.015165
    [19]
    LI W Q. Research on development and application of a high-precision broadband mueller matrix ellipsometer[D]. Wuhan: Huazhong University of Science and Technology, 2016: 7-9(in Chinese).
    [20]
    CHEN X G, LIU Sh Y, ZHANG Ch W, et al. Accurate measurement of templates and imprinted grating structures using Mueller matrix ellipsometry[J]. Acta Physica Sinica, 2014, 63(18):180701(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201418017
  • Cited by

    Periodical cited type(13)

    1. 马博华,杨尹. 基于激光传感器的室内舒适度智能控制系统设计. 激光杂志. 2021(12): 197-201 .
    2. 马佳博,王成玥,陈峰. 加激光选区熔化成形技术的产品设计三维模型研究. 激光杂志. 2020(05): 134-138 .
    3. 宋姗姗,刘韦. 基于激光技术的无线传感系统容错目标定位设计. 激光杂志. 2020(06): 36-39 .
    4. 潘森,高婧婧,许孝芳,毕勇,李金鹏. 多星敏感器地面热漂移标定位置误差检测研究. 激光技术. 2020(06): 664-667 . 本站查看
    5. 许爽,周铜. 电动汽车锂电池电源故障激光传感器设计. 激光杂志. 2019(03): 168-171 .
    6. 吴耕锐,郭三学,薄鸟,刘永利. 基于激光传感器的多应急救援车辆运输路径优化识别系统设计. 激光杂志. 2019(06): 88-92 .
    7. 李亚红,冯东华. 激光传感网络恶意代码主动检测系统设计. 激光杂志. 2019(06): 212-215 .
    8. 郑新建,刘玲玲. 基于激光传感器采集信息的电气设备状态分析研究. 激光杂志. 2019(07): 179-183 .
    9. 蒋天堂,杜焰. 基于激光传感器实时数据的交通信号灯控制优化研究. 激光杂志. 2019(09): 155-158 .
    10. 李房云,赵巍. 基于激光传感器数据的机器人工作路径智能控制. 激光杂志. 2019(09): 147-150 .
    11. 彭军,陈鑫源. 基于激光位移传感器的数据高速处理系统设计. 激光杂志. 2019(12): 107-109 .
    12. 韩春光,蔡彤琛,时广华,王科峰,汪志成. 基于向量积同向技术的改进APIT定位算法. 激光技术. 2018(03): 395-399 . 本站查看
    13. 杨喜良,邵磊,杨晓峥,张小虎,李柏松,高晞光. 调节型电液执行机构性能测试. 油气田地面工程. 2018(10): 90-95 .

    Other cited types(1)

Catalog

    Article views (5) PDF downloads (4) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return