Advanced Search
ZHOU Zhenglan, YUAN Yangsheng, SHU Jie, XU Xiang, QU Jun. Beam wander of a partially coherent crescent-like beam in non-Kolmogorov turbulence[J]. LASER TECHNOLOGY, 2019, 43(4): 579-584. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.025
Citation: ZHOU Zhenglan, YUAN Yangsheng, SHU Jie, XU Xiang, QU Jun. Beam wander of a partially coherent crescent-like beam in non-Kolmogorov turbulence[J]. LASER TECHNOLOGY, 2019, 43(4): 579-584. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.025

Beam wander of a partially coherent crescent-like beam in non-Kolmogorov turbulence

More Information
  • Received Date: November 13, 2018
  • Revised Date: December 06, 2018
  • Published Date: July 24, 2019
  • In order to investigate the evolution of beam wander of partially coherent crescent beams in non-Kolmogorov turbulence, the extended Huygens-Fresnel principle was used and the corresponding analytical expressions were obtained. Numerical simulation was carried out by using MATLAB. The results show that, in the non-Kolmogorov turbulence, beam wander of partially coherent crescent-like beams decreases with the increase of anisotropic parameters, the increase of turbulent inner scale, the decrease of turbulent outer scale and the decrease of structural constants respectively. Compared with isotropic turbulence, anisotropic turbulence has little effect on beam wander. Off-axis distance of the maximum intensity position of crescent-like beam increases with the increase of wavelength and beam order respectively. It decreases with the increase of coherence length. Off-axis characteristic at the position of the maximum intensity is beneficial for crescent-like beams to transmit around obstacles. The obtained conclusions have some reference value for practical optical communication.
  • [1]
    CHEN Y H, WANG F, LIU L, et al. Generation and propagation of a partially coherent vector beam with special correlation functions. Physical Review, 2014, A89(1): 1-11. https://www.researchgate.net/publication/261711005_Generation_and_propagation_of_a_partially_coherent_vector_beam_with_special_correlation_functions
    [2]
    CAI Y J, HE S L. Partially coherent flattened Gaussian beam and its paraxial propagation properties. Journal of the Optical Society of America, 2006, A23(10): 2623-2628. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16985546
    [3]
    NELSON M, AVRAMOV Z S, KOROTKOVA O, et al. Scintillation reduction in pseudo multi-Gaussian Schell-model beams in the maritime environment. Optics Communications, 2016, 364:145-149. DOI: 10.1016/j.optcom.2015.11.049
    [4]
    FEI J C, CUI Z F, WANG J S, et al. Propagation characteristics of elegant Laguerre-Gaussian beam passing through a circular aperture in turbulent atmosphere. Laser Technology, 2011, 35(6): 849-853 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201106033
    [5]
    LIANG C, WANG F, LIU X, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Optics Letters, 2014, 39(4):769-772. DOI: 10.1364/OL.39.000769
    [6]
    GBUR G. Partially coherent beam propagation in atmospheric turbulence. Journal of the Optical Society of America, 2014, A31(9):2038-2045. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM25401444
    [7]
    WEN W, JIN Y, HU M J, et al. Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere. Optics Communications, 2018, 415:48-55. DOI: 10.1016/j.optcom.2018.01.033
    [8]
    VOELZ D, XIAO X, KOROTKOVA O. Numerical modeling of Schell-model beams with arbitrary far-field patterns. Optics Letters, 2015, 40(3):352-355. DOI: 10.1364/OL.40.000352
    [9]
    GORI F, SANTARSUERO M. Devising genuine spatial correlation functions. Optics Letters, 2007, 32(24):3531-3533. DOI: 10.1364/OL.32.003531
    [10]
    WANG F, KOROTKOVA O. Convolution approach for beam propagation in random media. Optics Letters, 2016, 41(7):1546-1549. DOI: 10.1364/OL.41.001546
    [11]
    ZHONG Y L, CUI Z F, SHI J P, et al. Propagation properties of partially coherent flat-topped beam array in a turbulent atmosphere. Laser Technology, 2010, 34(4):542-547(in Chinese). http://cn.bing.com/academic/profile?id=d3b9bf5800adb2ef5fea48ad52df5409&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    XU K T, YUAN Y SH, FENG X, et al. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence. Laser Technology, 2015, 39(6):877-884(in Chinese). http://cn.bing.com/academic/profile?id=fa7f72a00d0eec03b879bf7e63980eae&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagation through turbulent atmosphere. Laser Technology, 2016, 40(5): 750-755(in Chinese). http://cn.bing.com/academic/profile?id=10a096410ceb432c981a85ec326d5fd6&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    CAI Y. Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: A review. Progress in Electromagnetics Research Symposium Proceedings, 2011, 7924(2): 170-180. http://cn.bing.com/academic/profile?id=a77f16bc500ce979c48f22d7dea226ab&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    GBUR G, WOLF E. Spreading of partially coherent beams in random media. Journal of the Optical Society of America, 2002, A19(8):1592-1598. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eb3a00cd003fd7a6b37e059f31bc75f6
    [16]
    YANG T, JI X L, LI X Q. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence. Acta Physica Sinica, 2015, 64(20):204206(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201520023
    [17]
    SALEM M, SHIRAI T, DOGARIU A, et al. Long-distance propagation of partially coherent beams through atmospheric turbulence. Optics Communications, 2003, 216:261-265. DOI: 10.1016/S0030-4018(02)02340-4
    [18]
    WANG F, LI J, PIEDRA M, et al. Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere. Optics Express, 2017, 25(21): 26055-26066. DOI: 10.1364/OE.25.026055
    [19]
    FENG J X, YUAN Y Sh, QU J, et al. Beam wander of multi-Gaussian schell-model hermite-Gaussian beam in atmospheric turbulence. Progress in Electromagnetics Research Symposium Proceedings, 2017, 22(19): 311-316. http://cn.bing.com/academic/profile?id=629a9e31804661cdc1eda47be1f0837f&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]NIE Xueying, XIANG Feidi, HUANG Xin, LIU Jinsong, YANG Zhengang, WANG Kejia. Measurement of terahertz radar cross sections of metal plates[J]. LASER TECHNOLOGY, 2016, 40(5): 676-681. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.012
    [2]ZHANG Xiwen, ZHAO Shanghong, LI Yongjun, DENG Boyu, CHENG Zhen. Multi-channel directional media access control protocol for airborne ultraviolet communication based on space division multiplexing[J]. LASER TECHNOLOGY, 2016, 40(3): 451-455. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.032
    [3]GENG Xue, LIU Xiao-juan, HAN Ke-zhen, FU Sheng-gui, QIN Hua. 3-D ray-tracing design for a duct with changing elliptical cross section[J]. LASER TECHNOLOGY, 2013, 37(2): 231-234. DOI: 10.7510/jgjs.issn.1001-3806.2013.02.023
    [4]LI Ai-ping, WANG An-quan, JI Yan-jun. Soliton-effect compression due to cross-phase modulation in photonic crystal fibers[J]. LASER TECHNOLOGY, 2010, 34(6): 781-784. DOI: 10.3969/j.issn.1001-3806.2010.06.017
    [5]LI Ya-jie. Research of analog signal’s cross phase modulation in SOA[J]. LASER TECHNOLOGY, 2010, 34(4): 573-576. DOI: 10.3969/j.issn.1001-3806.2010.04.037
    [6]ZHANG Zu-xing, YE Zhi-qing, SANG Ming-huang, NIE Yi-you. Wavelength conversion based on cross-phase modulation[J]. LASER TECHNOLOGY, 2008, 32(6): 587-589.
    [7]DUAN Zhi-chun, CHEN Jian-guo, ZHANG Li-ping, ZHOU Ding-fu, YANG Ze-hou. Solution to rate equations of a double-clad fiber laser[J]. LASER TECHNOLOGY, 2007, 31(3): 274-276.
    [8]DENG Cheng-xian, LI Zheng-jia, ZHU Chang-hong. Passively Q-switched intracavity single resonant optical parametric oscillator and Cr4+:YAG laser[J]. LASER TECHNOLOGY, 2005, 29(6): 589-593.
    [9]Sun Ronglu, Guo lixin, Dong Shangli, Yang Dezhuang. Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy[J]. LASER TECHNOLOGY, 2001, 25(5): 343-346.
    [10]Wang Shuicai, Xiao Dong, Yang Jianjun, Tang Jianming, Guan Yichun. A bicolor cross-mode-locked Ti:sapphire femtosecond laser[J]. LASER TECHNOLOGY, 1996, 20(6): 321-323.
  • Cited by

    Periodical cited type(3)

    1. 赵慧凯. 基于激光冲击的航空发动机风扇性能优化设计. 激光杂志. 2020(03): 134-138 .
    2. 樊国根, 蒙芳. 多传感器阵列的近场源联合参量估计优化. 国外电子测量技术. 2019(06): 145-149 .
    3. 肖博乐. 复杂电子信息与载体的可分离性判定方法研究. 赤峰学院学报(自然科学版). 2019(07): 82-85 .

    Other cited types(2)

Catalog

    Article views (4) PDF downloads (5) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return