[1]
|
LINDELL I V, TRETYAKOV S A, NIKOSKINEN K I, et al. BW media—media with negative parameters, capable of supporting backward waves[J]. Microwave and Optical Technology Letters, 2001, 31(2): 129-133. doi: 10.1002/(ISSN)1098-2760 |
[2]
|
VESELAGO V G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability[J]. Physics, 1968, 10(4): 509-514. |
[3]
|
CALOZ C, ITOH T. Novel microwave devices and structures based on the transmission line approach of meta-materials[C]// Microwave Symposium Digest, 2003 IEEE MTT-S International. New York, USA: IEEE, 2003: 195-198. |
[4]
|
PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782. doi: 10.1126/science.1125907 |
[5]
|
TAO H, BINGHA M, STRIKWERDA A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization[J]. Physical Review, 2008, B78(24): 241103. |
[6]
|
ZHOU J, DONG J, WANG B, et al. Negative refractive index due to chirality [J]. Physical Review, 2009, B79(12): 121104. |
[7]
|
ARSENAULLT A C, PUZZO D P, MANNERS I, et al. Photonic-crystal full-colour displays[J]. Nature Photonics, 2007, 1(8):468-472. doi: 10.1038/nphoton.2007.140 |
[8]
|
AKAHANE Y, ASANO T, SONG B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961):944-947. doi: 10.1038/nature02063 |
[9]
|
PARIMI P V, LU W T, VODO P, et al. Photonic crystals: Imaging by flat lens using negative refraction[J]. Nature, 2003, 426(6965): 404-408. doi: 10.1038/426404a |
[10]
|
SMITH D R, KROLL N. Negative refractive index in left-handed materials[J]. Physical Review Letters, 2000, 85(14):2933-2936. doi: 10.1103/PhysRevLett.85.2933 |
[11]
|
YIN Q T, YAO G, SHI S J, et al. Study on transparency structure induced by tunable teraherz plasmon[J]. Laser Technology, 2017, 41(6): 826-830 (in Chinese). |
[12]
|
ZHU X W, WANG X B, FU Y F, et al. Research of collector mi-rrors of CO2 laser produced plasma EUV source[J]. Laser Technology, 2010, 34(6):725-728(in Chinese). |
[13]
|
LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402 |
[14]
|
MASTRODDI F, FACCHINI G, GAUDENZI P. Multi-frequency dynamic absorber for improved spacecraft comfort during the launch phase[J]. CEAS Space Journal, 2012, 3(3/4):77-88. |
[15]
|
PU M B, WANG M, HU C, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime[J]. Optics Express, 2012, 20(23):25513-25519. doi: 10.1364/OE.20.025513 |
[16]
|
AMIN M, FARHAT M, BAGCI H. An ultra-broadband multilayered graphene absorber[J]. Optics Express, 2013, 21(24):29938-29948. doi: 10.1364/OE.21.029938 |
[17]
|
CHAO G U, SHAOBO Q U, PEI Z B, et al. A wide-band metamaterial absorber based on loaded magnetic resonators[J]. Chinese Physics Letters, 2011, 28(6):067808. doi: 10.1088/0256-307X/28/6/067808 |
[18]
|
XU Y L, LI E P, WEI X C, et al. A novel tunable absorber based on vertical graphene strips[J]. IEEE Microwave & Wireless Components Letters, 2016, 26(1):10-12. |
[19]
|
MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters, 1959, 3(1): 34-36. doi: 10.1103/PhysRevLett.3.34 |
[20]
|
SCHOISWOHL J, KRESSE G, SURNEV S, et al. Planar vanadium oxide clusters: Two-dimensional evaporation and diffusion on Rh(111)[J]. Physical Review Letters, 2004, 92(20):206103. doi: 10.1103/PhysRevLett.92.206103 |
[21]
|
WU W H, WANG D P, HUANG W H, et al. Property of VO2 thin film affected by doping and treatment temperature[J]. Journal of Building Materials, 2006, 9(5):548-554. |
[22]
|
CAVALLERI A, TOTH C, SIDERS C W, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition[J]. Physical Review Letters, 2001, 87(23):237401. doi: 10.1103/PhysRevLett.87.237401 |
[23]
|
DUMASBOUCHIAT F, CHAMPEAUX C, CATHERINOT A, et al. RF microwave switches based on reversible metal-semiconductor transition properties of VO2 thin films: An attractive way to realise simple RF microelectronic devices[J]. MRS Proceedings, 2008, 1129(2): 021109. |
[24]
|
HA S D, ZHOU Y, FISHER C J, et al. Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices[J]. Journal of Applied Physics, 2013, 113(18):184501. doi: 10.1063/1.4803688 |
[25]
|
SEO M, KYOUNG J, PARK H, et al. Active terahertz nanoantennas based on VO2 phase transition[J]. Nano Letters, 2010, 10(6):2064-2068. doi: 10.1021/nl1002153 |
[26]
|
LIU Z M, LI Y, ZHANG J, et al. A tunable metamaterial absorber based on VO2/W multilayer structure[J]. IEEE Photonics Techno-logy Letters, 2017, PP(99):1. |