HTML
-
实验中以HEVC-SCC参考软件SCM-3.0[20]为测试平台,聚焦光场图像bike, fountain, Laura以及seagull作为测试集。测试聚焦光场图像原始分辨率为7240pixel×5432pixel,子图像分辨率为75pixel×75pixel。由于子图像边缘存在光晕现象[18],因此在实验过程中将每个子图像在中心位置处裁剪64pixel×64pixel大小的像素块,拼接成新的光场图像作为实验测试序列。所有测试序列均转化为YUV为4:2:0的形式送入编码器进行压缩编码。实验中编码器配置文件设置为“all intra”[21],4个量化参量(quantization parameter,QP)设置为22, 27, 32及37。为了验证本文中算法的有效性,将其与4个编码算法进行对比:原始HEVC编码算法(HEVC)、集成了IBC的HEVC扩展参考软件HEVC-RExt 6.0[22](HEVC-RExt)、参考文献[19]中提出的视差补偿预测算法(disparity compensation coding method, DCCM)以及HEVC屏幕扩展编码标准[23](HEVC-SCC)。经典的BD峰值信噪比(BJONTEGAARD delta peak signal-to-noise ratio, BD-PSNR)以及BD-rate将作为评价标准来衡量算法的编码效率。
视点提取过程中,提取块大小设置为8pixel×8pixel。当前编码块最近邻像素块搜索过程中,厚度T设置为当前编码块的尺寸,且在相邻视点图像中分别搜索3个与当前编码块最相近的像素块来预测编码块。实验过程中,所提线性加权算法将替换帧内角度预测模式4来嵌入HEVC-SCC平台。相邻视点图像中搜索范围V与H均设置为16。
表 1中给出了本文中所提算法与其它3种压缩编码算法相比于HEVC的BD-PSNR以及BD-rate对比。从表 1中可以看出,本文中所提算法可以获得最优的编码效率。相比于HEVC,本文中所提算法可以获得平均2.55dB的BD-PSNR编码增益。相比于HEVC-RExt,所提算法可以获得0.93dB的平均BD-PSNR增益。与DCCM算法相比,所提算法也可以获得0.72dB的平均BD-PSNR增益。其原因是DCCM只是利用子图像的相关性,搜索得到当前编码块的最佳预测块。但是对于纹理复杂区域,该算法的预测精度较差。HEVC-SCC相比于HEVC帧内编码,集成了新的IBC以及palette (PLT)预测模式,在编码性能上要优于HEVC, HEVC-RExt以及DCCM 3种压缩算法。本文中所提算法可以获得0.56dB的平均BD-PSNR增益。其主要原因是本文中所提算法利用率失真优化将线性加权预测算法以及IBC预测算法结合,增加了编码块的预测精度。此外,本文中所提压缩编码算法对于纹理更为复杂的光场图像可以获得更好的编码效率。例如,对于光场图像Laura来说,所提编码算法相比于HEVC-SCC,可以获得0.74dB的BD-PSNR增益。
test images compressionmethods BD-PSNR/dB BD-rate/% bike HEVC-RExt 1.35 -18.51 DCCM 1.63 -23.21 HEVC-SCC 1.69 -24.57 the proposal 2.14 -32.41 fountain HEVC-RExt 1.52 -22.11 DCCM 1.77 -26.25 HEVC-SCC 1.84 -27.33 the proposal 2.34 -36.02 Laura HEVC-RExt 1.53 -20.40 DCCM 1.69 -22.80 HEVC-SCC 1.88 -25.36 the proposal 2.62 -35.99 seagull HEVC-RExt 2.07 -31.77 DCCM 2.24 -35.32 HEVC-SCC 2.56 -39.23 the proposal 3.08 -48.89 Table 1. BD-PSNR and BD-rate performance of the proposed method and the compared compression methods to HEVC
表 2中给出了4种编码算法相比于HEVC的编码时间比率。从表 2中可以看出,本文中所提编码算法需要最多的编码时间,平均为HEVC编码时间的23.38倍。主要原因是本文中所提算法在选择最优编码块尺寸以及最优预测模式时遍历了所有的块尺寸以及所有的预测模式。这一遍历过程是非常耗时的,不过,本文中所提编码算法可以获得一个较高的编码效率。
test images HEVC-RExt DCCM HEVC-SCC the proposal bike 2.81 3.31 10.35 13.86 fountain 3.21 4.10 11.35 18.48 Laura 3.97 4.15 29.76 31.25 seagull 3.04 4.57 26.01 29.92 average 3.26 4.03 19.37 23.38 Table 2. Coding time ratios to HEVC
图 5中给出了在比特率近似0.16bit/pixel情况下,解码光场图像的虚拟绘制视点质量对比。从图 5中可以看出,所提算法相比于HEVC可以获得一个较好的虚拟绘制视点质量。其主要原因有两方面:一是所提编码算法相比于HEVC可以获得一个更高的编码块预测精度;二是所提编码算法对于纹理复杂区域可以确保编码块的细节信息。