Advanced Search
HU Keya, WANG Jun, WANG Ying. Image encryption based on block compression sensing and the improved magic square transformation[J]. LASER TECHNOLOGY, 2019, 43(4): 532-538. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.017
Citation: HU Keya, WANG Jun, WANG Ying. Image encryption based on block compression sensing and the improved magic square transformation[J]. LASER TECHNOLOGY, 2019, 43(4): 532-538. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.017

Image encryption based on block compression sensing and the improved magic square transformation

More Information
  • Received Date: September 16, 2018
  • Revised Date: November 27, 2018
  • Published Date: July 24, 2019
  • In order to improve the security of multi-image encryption and solve the problem of large amount of data in multi-image encryption system, the encryption method based on block compressed sensing and improved magic square transform was adopted. During the encryption process, the sensitivity of chaotic sequence to initial value was fully utilized and the periodicity of encryption algorithm based on traditional magic square transformation was solved. Combining the block compression sensing method, the amount of data in the encryption system was reduced. Four 256×256 gray-scale images were encrypted and tested. The results show that the encryption time of the system is only 0.98s. The quality of the reconstructed image is high. The correlation coefficients were higher than 0.99. Peak signal-to-noise ratio (PSNR) values are greater than 35dB. This algorithm reduces the amount of data in the encryption system and further improves the security of the system. The algorithm is easy to implement and can complete multi-image encryption efficiently and safely.
  • [1]
    WU J J, XIE Zh W, LIU Zh G, et al. Multiple-image encryption based on computational ghost imaging[J]. Optics Communications, 2016, 359:38-43. DOI: 10.1016/j.optcom.2015.09.039
    [2]
    LI W N, PHAN A H, PIAO M L, et al. Multiple-image encryption based on triple interferences for flexibly decrypting high-quality images[J]. Applied Optics, 2015, 54(11):3273. DOI: 10.1364/AO.54.003273
    [3]
    CHANG H T, SHUI J W, LIN K P. Image multiplexing and encryption using the nonnegative matrix factorization method adopting digital holography[J]. Applied Optics, 2017, 56(4):958. DOI: 10.1364/AO.56.000958
    [4]
    KONG D Zh, SHEN X J. Multiple-image encryption based on optical wavelet transform and multichannel fractional Fourier transform[J]. Optics & Laser Technology, 2014, 57: 343-349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01ba1b799f679f5c5c6a865c0a73b323
    [5]
    SHAN M, CHANG J, ZHONG Z, et al. Double image encryption based on discrete multiple-parameter fractional Fourier transform and chaotic maps[J]. Optics Communications, 2012, 285(21/22): 4227-4234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57713d50ade8cfc8c29ddc8623b1c8d3
    [6]
    SITU G H, ZHANG J J. Multiple-image encryption by wavelength multiplexing[J]. Optics Letters, 2005, 30 (11) :1306-1308. DOI: 10.1364/OL.30.001306
    [7]
    LIU Zh J, ZHANG Y, ZHAO H F, et al. Optical multi-image encryption based on frequency shift[J]. Optik—International Journal for Light and Electron Optics, 2011, 122(11):1010-1013. DOI: 10.1016/j.ijleo.2010.06.039
    [8]
    SHI Y S, SITU G H, ZHANG J J. Multiple-image hiding in the Fresnel domain[J]. Optics Letters, 2007, 32(13) :1914-1916. DOI: 10.1364/OL.32.001914
    [9]
    ZHONG W B, DENG Y H, FANG K T. Image encryption by using magic squares[C]//2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). New York, USA: IEEE, 2017: 771-775.
    [10]
    WANG D M, JIN Y Q. Semi-period of doubly even order magic square transformed digital images[J]. Journal of Zhejiang University, 2005, 32(3):273-276(in Chinese).
    [11]
    LIN Y, LIN J B. Study and application of magic square group in process of image scrambling[J]. Computer Technology & Development, 2012, 22(9):119-122(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjfz201209030
    [12]
    LI T Y. An image encryption algorithm based on chaotic sequences and magic square transformation[J]. Network Security Technology & Application, 2006(5):90-92(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlaqjsyyy200605036
    [13]
    CHEN Q, LIAO X, CHEN Y. Modified image encryption based on chaotic sequences and rubik cube transformation[J]. Computer Engineering & Applications, 2005, 41(22):138-139(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgcyyy200522044
    [14]
    WANG D M, HUANG L, WANG J R. Encrypting digital holograph with magic transformation[J]. Journal of Zhejiang University of Technology, 2007, 35(1):116-118(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjgydxxb200701027
    [15]
    LUO Q, WEI Q, MIAO X J. Blocked image compression and reconstruction algorithm based on compressed sensing[J]. Scientia Sinica Informationis, 2014, 44(8) :1036-1047 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-fc201408007
    [16]
    GAN L. Block compressed sensing of natural images[C] //2007 15th International Conference on Digital Signal Processing. New York, USA: IEEE, 2007: 403-406. https://ieeexplore.ieee.org/document/4288604
    [17]
    ZHOU N, YANG J, TAN C, et al. Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform[J]. Optics Communications, 2015, 354:112-121. DOI: 10.1016/j.optcom.2015.05.043
    [18]
    RAWAT N, KIM B, KUMAR R. Fast digital image encryption based on compressive sensing using structurally random matrices and Arnold transform technique[J]. Optik—International Journal for Light and Electron Optics, 2016, 127(4):2282-2286. DOI: 10.1016/j.ijleo.2015.11.064
    [19]
    LIU X Y, CAO Y P, LU P, et al. Optical image encryption technique based on compressed sensing and arnold transformation[J]. Optik—International Journal for Light and Electron Optics, 2013, 124(24):6590-6593. DOI: 10.1016/j.ijleo.2013.05.092
    [20]
    LI Y H. Improved model of image block compressed sensing[J]. Computer Engineering & Applications, 2011, 47(25):186-189(in Chinese). http://cn.bing.com/academic/profile?id=f540dd963780a0e4d77fe10575a0de52&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    QIAO J P, DENG L W, HE J, et al. Optimization of fast image encryption algorithm based on chaotic mapping[J]. Laser Technology, 2017, 41(6):897-903(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201706026
  • Cited by

    Periodical cited type(14)

    1. 洪炎,王艺杭,苏静明,温言. 基于行列异或的Arnold双置乱图像加密方法. 科学技术与工程. 2024(02): 649-657 .
    2. 陈凤,杨阳,程建军,朱立东,张勇. 基于Arnold变换的抗截获波形设计方法. 无线电通信技术. 2024(01): 135-142 .
    3. 朱静,杭后俊,郭萍,程永建,吴亚玲,孙永妍. 基于Julia集和DNA编码的彩色图像加密算法. 计算机与数字工程. 2024(08): 2479-2483+2504 .
    4. 周业勤,张辉. 新三维拟仿射变换应用于图像加密. 计算机时代. 2022(02): 31-35 .
    5. 田鹏义,许定根,杨保平. 基于测量域复采样压缩感知信息隐藏算法. 现代电子技术. 2022(05): 74-78 .
    6. 李向军,喻鹏,刘伯成,袁凌利. 一种基于四方定理与幻方的矩形图像置乱方法. 计算机工程与科学. 2022(09): 1583-1593 .
    7. 何纪辉,王倩,赵瑛. 数字图像加密技术综述. 计算机时代. 2022(10): 12-16 .
    8. 张波,佟玉强. 基于双随机相位编码的多特征人脸模板保护方法. 激光与光电子学进展. 2022(18): 215-222 .
    9. 田佳鹭,邓立国. 基于五阶CNN超混沌系统的图像加密方法. 西华大学学报(自然科学版). 2021(02): 63-70+81 .
    10. 张艳鹏,侯冬梅,杨倩,张博阳. 基于混沌同步技术的图像加密算法设计研究. 现代电子技术. 2021(19): 39-42 .
    11. 杨正理,史文,陈海霞. 光纤周界报警信号自适应压缩感知. 激光技术. 2020(01): 74-80 . 本站查看
    12. 李辉. 基于改进型压缩感知的平面设计图像处理技术研究. 现代电子技术. 2020(18): 19-21+25 .
    13. 杨影,邱芬,潘舒. 图像库的人体姿态多重图像加密技术. 激光杂志. 2020(10): 53-57 .
    14. 韩雪娟,李国东,王思秀. 基于Logistic和超混沌结合的加密算法. 计算机科学. 2019(S2): 477-482 .

    Other cited types(17)

Catalog

    Article views (4) PDF downloads (20) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return