Citation: | GAO Xuheng, GUO Ning, WU Lizhi, ZHANG Wei, SHEN Ruiqi. Review of multi-point laser ignition for internal combustion engines[J]. LASER TECHNOLOGY, 2019, 43(4): 517-526. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.015 |
[1] |
TAYLOR A M K P. Science review of internal combustion engines [J]. Energy Policy, 2008, 36(12): 4657-4667. DOI: 10.1016/j.enpol.2008.09.001
|
[2] |
QIN X, KOBAYASHI H, NIIOKA T. Laminar burning velocity of hydrogen-air premixed flames at elevated pressure [J]. Experimental Thermal & Fluid Science, 2000, 21(1): 58-63. http://cn.bing.com/academic/profile?id=bc0b9fdcc7503fbfe2a80433fd5716f9&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
LAMOUREUX N, DJEBAÏLI-CHAUMEIX N, PAILLARD C E. Laminar flame velocity determination for H2-air-He-CO2 mixtures using the spherical bomb method [J]. Experimental Thermal & Fluid Science, 2003, 27(4): 385-393. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7893438f5785936631863da8537ae50d
|
[4] |
JI C, WANG S. Experimental study on combustion and emissions performance of a hybrid hydrogen-gasoline engine at lean burn limits[J]. International Journal of Hydrogen Energy, 2010, 35(3):1453-1462. DOI: 10.1016/j.ijhydene.2009.11.051
|
[5] |
KARIM G A, WIERZBA I, AL-ALOUSI Y. Methane-hydrogen mixtures as fuels [J]. International Journal of Hydrogen Energy, 1996, 21(7): 625-631. DOI: 10.1016/0360-3199(95)00134-4
|
[6] |
PULKRABEK W W. Engineering fundamentals of the internal combustion engine[M]. New Jersey, USA: Pearson Prentice Hall, 2004: 106.
|
[7] |
SHRESTHA S B, KARIM G. Hydrogen as an additive to methane for spark ignition engine applications [J]. International Journal of Hydrogen Energy, 1999, 24(6): 577-586. DOI: 10.1016/S0360-3199(98)00103-7
|
[8] |
SCHEFER R. Hydrogen enrichment for improved lean flame stability [J]. International Journal of Hydrogen Energy, 2003, 28(10): 1131-1141. DOI: 10.1016/S0360-3199(02)00199-4
|
[9] |
CHEHROUDI B. Laser ignition for combustion engines [C]//Advanced Laser Applications Conference and Exposition. Michigan, USA: The International Lasers Users Council, 2004: 1-20. https://www.researchgate.net/publication/266374266_Laser_Ignition_For_Combustion_Engines
|
[10] |
PHUOC T X. Laser-induced spark ignition fundamental and applications [J]. Optics & Lasers in Engineering, 2006, 44(5): 351-397. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025510683/
|
[11] |
WINTNER E, KOFLER H, SRIVASTAVA D K, et al. Laser plasma ignition: Status, perspectives, solutions[J].Proceedings of the SPIE, 2013, 9065: 90650B. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0214103659/
|
[12] |
KOFLER H, TAUER J, TARTAR G, et al. An innovative solid-state laser for engine ignition [J]. Laser Physics Letters, 2007, 4(4): 322-327. DOI: 10.1002/lapl.200610106
|
[13] |
KROUPA G. Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines [J]. Optical Engineering, 2009, 48(1): 014202-014205. DOI: 10.1117/1.3072958
|
[14] |
MA Y F, LI X D, YU X, et al. A novel miniaturized passively Q-switched pulse-burst laser for engine ignition [J]. Optics Express, 2014, 22(20): 24655-24665. DOI: 10.1364/OE.22.024655
|
[15] |
DEARDEN G, SHENTON T. Laser ignited engines: Progress, cha-llenges and prospects[J]. Optics Express, 2013, 21(s6): A1113-A1125. DOI: 10.1364/OE.21.0A1113
|
[16] |
TAUER J, KOFLER H, WINTNER E. Laser-initiated ignition [J]. Laser & Photonics Reviews, 2010, 4(1): 99-122. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211050010/
|
[17] |
FUCHS D I J, LEITNER D I A, TINSCHMANN G, et al. Concept for high-performance direct ignition gas engines [J]. MTZ Worldwide, 2013, 74(5): 18-23. DOI: 10.1007/s38313-013-0048-x
|
[18] |
LYON E, KUANG Z, CHENG H, et al. Multi-point laser spark generation for internal combustion engines using a spatial light modulator [J]. Journal of Physics, 2014, D47(47): 475501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3c38e14bc691bbb4b4b561db511b9d5
|
[19] |
CHEN M, DOU Zh G, XI W X. Advances in the methods of laser induced plasma ignition [J]. Laser & Optoelectronics Progress, 2018, 55(3): 030010 (in Chinese).
|
[20] |
NAKAYA S, ISEKI S, GU X J, et al. Flame kernel formation behaviors in close dual-point laser breakdown spark ignition for lean methane/air mixtures [J]. Proceedings of the Combustion Institute, 2017, 36(3): 3441-3449. DOI: 10.1016/j.proci.2016.07.057
|
[21] |
PHUOC T X. Laser spark ignition: Experimental determination of laser-induced breakdown thresholds of combustion gases [J]. Optics Communications, 2000, 175(4/6): 419-423. http://cn.bing.com/academic/profile?id=fdb928050a7af977181d5eeec023c350&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
YABLONOVITCH E. Self-phase modulation and short-pulse generation from laser-breakdown spark [J]. Physical Review, 1974, A10(5): 1888-1895.
|
[23] |
TAIRA T. High brightness microchip laser and engine ignition [J]. The Review of Laser Engineering, 2010, 38(8): 576-584. DOI: 10.2184/lsj.38.576
|
[24] |
PHUOC T X. Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures [J]. Combustion & Flame, 2000, 122(4): 508-510. http://cn.bing.com/academic/profile?id=d0e3fa49c11a664f100fb1f3bed72ed8&encoded=0&v=paper_preview&mkt=zh-cn
|
[25] |
MORSY M H, KO Y S, CHUNG S H. Laser-induced ignition using a conical cavity in CH4-air mixtures [J]. Combustion & Flame, 1999, 119(4): 473-482. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b945ba6814078c3342000aa64932fc58
|
[26] |
MORSY M H, KO Y S, CHUNG S H, et al. Laser-induced two-point ignition of premixture with a single-shot laser [J]. Combustion & Flame, 2001, 124(4): 724-727. http://cn.bing.com/academic/profile?id=b2d2ea038861deb71b2580498e6b0bb9&encoded=0&v=paper_preview&mkt=zh-cn
|
[27] |
MORSY M H, CHUNG S H. Laser-induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture [J]. Experimental Thermal & Fluid Science, 2003, 27(4): 491-497. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36d20a9188fa5978dc6031423e4480a1
|
[28] |
RYU S K, WON S H, CHUNG S H. Laser-induced multi-point ignition with single-shot laser using conical cavities and prechamber with jet holes [J]. Proceedings of the Combustion Institute, 2009, 32(2): 3189-3196. DOI: 10.1016/j.proci.2008.05.080
|
[29] |
WEINROTTER M, KOPECEK H, TESCH M, et al. Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure [J]. Experimental Thermal & Fluid Science, 2005, 29(5): 569-577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f6ffd96b43140dfa1942c05389d5928
|
[30] |
KUANG Z, LYON E, CHENG H, et al. Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance[J]. Optics and Lasers in Engineering, 2017, 90(1): 275-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7eb6f32a033b437a947035d95c9bd830
|
[31] |
NICOLAIE P, TSUNEKANE M, TAIRA T. All-poly-crystalline ceramics Nd:YAG/Cr4+:YAG monolithic micro-lasers with multiple-beam output [M]. Vilnius, Lithuania: InTech, 2011: 59-82.
|
[32] |
TSUNEKANE M. Micro-solid-state laser for ignition of automobile engines[M].Vilnius, Lithuania: InTech, 2010: 195-212.
|
[33] |
TAIRA T. High brightness microchip lasers for engine ignition[C]//Frontiers in Optics. Washington DC, USA: Optical Society of America, 2012: FM3G. 1. https://www.osapublishing.org/abstract.cfm?uri=FiO-2012-FM3G.1
|
[34] |
TSUNEKANE M, TAIRA T. Long time operation of composite ceramic Nd: YAG/Cr: YAG micro-chip lasers for ignition[C]// Laser Ignition Conference. Washington DC, USA: Optical Society of America, 2015: T4A-3. https://www.osapublishing.org/abstract.cfm?uri=LIC-2015-T4A.3
|
[35] |
DENG S P, CHEN P F, WANG Y, et al. Dual-end LD-pumped slab lasers with folded three-pass resonators [J]. Laser Technology, 2018, 42(1):43-47 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801009
|
[36] |
LI B Zh, ZOU Y G. Tunable vertical cavity surface emitting lasers [J]. Laser Technology, 2018, 42(4):556-561 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb200708041
|
[37] |
LIU J Q, WANG N, YANG Y Y, et al. A micro acousto-optic Q-switched laser with narrow pulse width [J]. Laser Technology, 2017, 41(4):562-565 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201704021
|
[38] |
LI Y L, JIA K, GU X S, et al. Study on an acousto-optical Q-switched Nd:YVO4 laser with 25kHz repetition rate and about 2ns pulse duration [J]. Laser Technology, 2018, 42(1):34-38 (in Chinese).
|
[39] |
YANG L, DONG J. Progress in laser ignition based on passively Q-switched solid-sate lasers [J]. Laser & Optoelectronics Progress, 2015, 52(3): 030007 (in Chinese). https://core.ac.uk/display/41459029
|
[40] |
MA Y F, HE Y, YU X, et al. Research progress of laser source used in laser induced plasma ignition [J]. Infrared and Laser Engineering, 2016, 45(11): 61-66 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201611012
|
[41] |
DONG J, WANG G Y, REN Y Y. Advances in passively Q-switched solid-state lasers based on composite materials [J]. Chin-ese Journal of Lasers, 2013, 40(6): 0601003 (in Chinese). DOI: 10.3788/CJL
|
[42] |
NICOLAIE P, TSUNEKANE M, KANEHARA K, et al. Composite all-ceramics, passively Q-switched Nd: YAG/Cr4+: YAG monolithic micro-laser with two-beam output for multi-point ignition[C]//Proceedings of the Lasers and Electro-Optics. New York, USA: IEEE, 2011: 1-2. https://www.osapublishing.org/abstract.cfm?uri=CLEO_SI-2011-CMP1
|
[43] |
NICOLAIE P, TSUNEKANE M, TAIRA T. Composite, all-cera-mics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition [J]. Optics Express, 2011, 19(10): 9378-9384. DOI: 10.1364/OE.19.009378
|
[44] |
WANG Z, YU J, XIA K, et al. 2×2 arrayed and passively Q-switched Nd:YVO4 laser under Dammann-arrayed pumping [J]. Applied Optics, 2014, 53(12): 2664-2668. DOI: 10.1364/AO.53.002664
|
[45] |
MA Y, HE Y, YU X, et al. Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping [J]. Optics Express, 2015, 23(19): 24955-24961. DOI: 10.1364/OE.23.024955
|