Advanced Search
QI Yongfeng, MA Zhongyu. Hyperspectral image classification method based on neighborhood spectra and probability cooperative representation[J]. LASER TECHNOLOGY, 2019, 43(4): 448-452. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.003
Citation: QI Yongfeng, MA Zhongyu. Hyperspectral image classification method based on neighborhood spectra and probability cooperative representation[J]. LASER TECHNOLOGY, 2019, 43(4): 448-452. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.003

Hyperspectral image classification method based on neighborhood spectra and probability cooperative representation

More Information
  • Received Date: September 10, 2018
  • Revised Date: November 11, 2018
  • Published Date: July 24, 2019
  • In order to improve classification accuracy of hyperspectral remote sensing images, a classification method based on spatial information and spectral information was proposed by combining pixel neighborhood spectrum with probability co-representation method. Firstly, the neighborhood spectrum of pixels was generated by interpolation method. Then, the probability cooperative representation method was used to classify the samples to be tested. By using the proposed method, classification experiments were carried out on AVIRIS Indian Pines and Salinas scene hyperspectral remote sensing databases, compared with principal component analysis, support vector machine, sparse representation classifier and cooperative representation classifier. The results show that, the recognition accuracy of the proposed method on AVIRIS Indian Pines database is about 17% higher than that of the principal component analysis method. Its recognition accuracy and kappa coefficient are better than those of the other four methods. This method is a good classification method for hyperspectral remote sensing images.
  • [1]
    DU B, ZHANG Y X, ZHANG L P, et al. A hypothesis in dependent subpixel target detector for hyperspectral images[J]. Signal Process, 2015, 110:244-249. DOI: 10.1016/j.sigpro.2014.08.018
    [2]
    WANG Q, YANG G, ZHANG J F, et al. Unsupervised band selection algorithm combined with K-L divergence and mutual information [J]. Laser Technology, 2018, 42(3):417-721 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201803024
    [3]
    DALM M, BUXTON M W N, RUITENBEEK F J A. Discriminating ore and waste in a porphyry copper deposit using short-wavelength infrared (SWIR) hyperspectral imagery[J]. Minerals Engineering, 2017, 105:10-18. DOI: 10.1016/j.mineng.2016.12.013
    [4]
    KATHRYN E W, SVEIN K S, MARTIN H S, et al. Non-invasive assessment of packaged cod freeze-thaw history by hyperspectral imaging[J]. Journal of Food Engineering, 2017, 205: 64-73. DOI: 10.1016/j.jfoodeng.2017.02.025
    [5]
    LUO Sh Zh, WANG Ch, XI X H, et al. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation[J]. Ecological Indicators, 2017, 73:378-387. DOI: 10.1016/j.ecolind.2016.10.001
    [6]
    XIA J Sh, FALCO N, BENEDIKTSSON J A, et al. Hyperspectral image classification with rotation random forest via KPCA[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4):1601-1609. DOI: 10.1109/JSTARS.2016.2636877
    [7]
    WANG Y, GUO L, LIANG N. A dimensionality reduction method based on KPCA with optimized sample set for hyperspectral image[J]. Acta Photonica Sinica, 2011, 40(6): 847-851(in Chinese). DOI: 10.3788/gzxb
    [8]
    CHEONG H P, HAESUN P.A comparison of generalized linear discriminant analysis algorithms [J].Pattern Recognition, 2008, 41(3): 1083-1097. DOI: 10.1016/j.patcog.2007.07.022
    [9]
    SMARAJIT B, AMITA P, RITA S, et al. Generalized quadratic discriminant analysis [J]. Pattern Recognition, 2015, 48(8): 2676-2684. DOI: 10.1016/j.patcog.2015.02.016
    [10]
    XIANG Y J, YANG G, ZHANG J F, et al. Dimensionality reduction for hyperspectral imagery manifold learning based on spectral gradient angles [J]. Laser Technology, 2017, 41(6): 921-926(in Ch-inese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201706030
    [11]
    GU Y F, CHEN W, DI Y, et al. Representative multiple kernel learning for classification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2852-2865 DOI: 10.1109/TGRS.2011.2176341
    [12]
    ZHAI Y G, ZHANG L F, WANG N, et al. A modified locality-preserving projection approach for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8):1059-1063. DOI: 10.1109/LGRS.2016.2564993
    [13]
    HE F, WANG R, YU Q, et al. Feature extraction of hyperspectral image of weighted spatial and spectral locality preserving projectio[J]. Optics and Precision Engineering, 2017, 25(1):263-273(in Chinese). DOI: 10.3788/OPE.
    [14]
    WRIGHT J, YANG A Y, GANESH A. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(2): 210-227. http://cn.bing.com/academic/profile?id=e7fce4926aa2e9b08bfee42b1952f5b6&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    HE Zh, LIU L, ZHOU S H, et al. Learning group-based sparse and low-rank representation for hyperspectral image classification[J]. Pattern Recognition, 2016, 60:1041-1056. DOI: 10.1016/j.patcog.2016.04.009
    [16]
    ZHANG E L, ZHANG X R, JIAO L Ch, et al. Weighted multifeature hyperspectral image classification via kernel joint sparse representation [J]. Neurocomputing, 2016, 178:71-86. DOI: 10.1016/j.neucom.2015.07.114
    [17]
    ZHANG L, YANG M, FENG X. Sparse representation or collaborative representation: Which helps face recognition?[C]//Proceedings of IEEE International Conference on Computer Vision(ICCV). New York, USA: IEEE, 2011: 471-478.
    [18]
    LI J Y, ZHANG H Y, HUANG Y Ch, et al. Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3707-3719. DOI: 10.1109/TGRS.2013.2274875
    [19]
    LI W, DU Q. Joint within-class collaborative representation for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2200-2208. DOI: 10.1109/JSTARS.2014.2306956
    [20]
    YUAN M D, FENG D Zh, LIU W J, et al. Collaborative representation discriminant embedding for image classification[J]. Journal of Visual Communication and Image Representation, 2016, 41:212-224. DOI: 10.1016/j.jvcir.2016.10.001
    [21]
    ZHANG G Q, SUN H J, XIA G Y, et al. Kernel collaborative re-presentation based dictionary learning and discriminative projection [J]. Neurocomputing, 2016, 207:300-309. DOI: 10.1016/j.neucom.2016.04.044
    [22]
    CAI S J, ZHANG L, ZUO W M, et al. A probabilistic collaborative representation based approach for pattern classification[C]//IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 2950-2959.
    [23]
    LI L, GE H W, GAO J Q. A spectral-spatial kernel-based method for hyperspectral imagery classification [J]. Advances in Space Research, 2017, 59(4): 954-967. DOI: 10.1016/j.asr.2016.11.006
    [24]
    HOU B H, YAO M L, WANG R, et al. Spatial-spectral semi-supervised local discriminant analysis for hyperspectral image classification[J]. Acta Optica Sinaca, 2017, 37(7):0728002(in Chinese). DOI: 10.3788/AOS
  • Cited by

    Periodical cited type(3)

    1. 靳龙, 张兴强. 圆形周期介质内艾里光束的传输特性. 激光技术. 2019(03): 432-436 . 本站查看
    2. 许江勇, 周光付, 任建军, 周波. LHM的新颖物理性质. 兴义民族师范学院学报. 2019(03): 106-110 .
    3. 张鑫. 基于虚拟现实的室内照明均一性智能控制系统设计. 长春大学学报. 2019(10): 45-49 .

    Other cited types(0)

Catalog

    Article views (3) PDF downloads (8) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return