Advanced Search
ZHANG Yujiao, GAO Shaohua, SONG Xiao, YU Xuanyi, WANG Jiayi, ZHANG Xinzheng. Preparation and characteristics of large aperture liquid crystal q-wave-plates[J]. LASER TECHNOLOGY, 2019, 43(4): 442-447. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.002
Citation: ZHANG Yujiao, GAO Shaohua, SONG Xiao, YU Xuanyi, WANG Jiayi, ZHANG Xinzheng. Preparation and characteristics of large aperture liquid crystal q-wave-plates[J]. LASER TECHNOLOGY, 2019, 43(4): 442-447. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.002

Preparation and characteristics of large aperture liquid crystal q-wave-plates

More Information
  • Received Date: October 18, 2018
  • Revised Date: December 03, 2018
  • Published Date: July 24, 2019
  • In order to solve the problems of poor repeatability, cumbersome methods and aperture limitation in the preparation of liquid crystal q-wave-plates, a preparation method of liquid crystal q-wave-plates was adopted based on ultraviolet mask exposure and liquid crystal out-of-plane orientation technology. Theoretical analysis and experimental verification were carried out. The ultraviolet exposure system was built. Large aperture liquid crystal q-wave-plates were prepared with diameter of 2.54cm, topological charges q of 1 and initial angle of 0.The results show that the conversion efficiency of spin angular momentum to orbital angular momentum of the large aperture liquid crystal q-wave-plates constructed by ultraviolet mask method can reach 85%. By using the wave plate, the generation and conversion of vortices and vector vortices are realized. The method of constructing large aperture liquid crystal q-wave-plates based on ultraviolet mask has advantages of low cost, simple preparation process and fast speed. It can realize batch fabrication of liquid crystal q-wave-plates. It is conducive to the commercialization of liquid crystal q-wave-plates.
  • [1]
    MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of orbital angular momentum states of photons[J]. Nature, 2001, 412(6844):313-316. DOI: 10.1038/35085529
    [2]
    FRANKE-ARNOLD S, ALLEN L, PADGETT M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2010, 2(4):299-313. http://cn.bing.com/academic/profile?id=d3b10f48a232679d641c1348dc305c67&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    SINGER W, RUBINSZTEINDUNLOP H, GIBSON U. Manipulation and growth of birefringent protein crystals in optical tweezers[J]. Optics Express, 2004, 12(26):6440-6445. DOI: 10.1364/OPEX.12.006440
    [4]
    KIM B N, HIRAGA K, MORITA K, et al. Microstructure and optical properties of transparent alumina[J]. Acta Materialia, 2009, 57(5):1319-1326. DOI: 10.1016/j.actamat.2008.11.010
    [5]
    SWARTZLANDER G A, GAHAGAN K T. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap[J]. Journal of the Optical Society of America, 1999, B16(4):533-537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ab6ea6d30800e8a36c8292733d330f0
    [6]
    TAO S H, YUAN X C, LIN J, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams[J]. Journal of Applied Physics, 2006, 100(4):043105. DOI: 10.1063/1.2260823
    [7]
    JESACHER A, FRüHAPTER S, BERNET S, et al. Size selective trapping with optical "cogwheel" tweezers[J]. Optics Express, 2004, 12(17):4129-4135. DOI: 10.1364/OPEX.12.004129
    [8]
    JACK B, YAO A M, LEACH J, et al. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces[J]. Physical Review, 2010, A81(4):043644. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1c2e01fcb2d3e731c58036c8e924087
    [9]
    DING D S, ZHANG W, ZHOU Z Y, et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble[J]. Science Foundation in China, 2015, 114(3):050502. http://cn.bing.com/academic/profile?id=6355e055d6b23e1f8081ceb2eabd17a7&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    WANG X L, CAI X D, SU Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540):516-519. DOI: 10.1038/nature14246
    [11]
    LOU K, QIAN S X, WANG X L, et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon[J]. Optics Express, 2012, 20(1):120-127. DOI: 10.1364/OE.20.000120
    [12]
    LOU K, QIAN S X, REN Z C, et al. Femtosecond laser processing by using patterned vector optical fields[J]. Scientific Reports, 2013, 3(2):2281. http://cn.bing.com/academic/profile?id=ba06f87b375ef0eb7cc4638c0d0a930f&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    ANGER P, BHARADWAJ P, NOVOTNY L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 2006, 96(11):113002. DOI: 10.1103/PhysRevLett.96.113002
    [14]
    LEE K G, KIHM H W, KIHM J E, et al. Vector field microscopic imaging of light[J]. Nature Photonics, 2006, 1(1):53-56. http://cn.bing.com/academic/profile?id=baf030a77d7d321c0fb732982f18f02c&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    NOVOTNY L, BEVERSLUIS M R, YOUNGWORTH K S, et al. Longitudinal field modes probed by single molecules[J]. Physical Review Letters, 2001, 86(23):5251-5254. DOI: 10.1103/PhysRevLett.86.5251
    [16]
    WRÓBEL P, PNIEWSKI J, ANTOSIEWICZ T J, et al. Focusing radially polarized light by a concentrically corrugated silver film without a hole[J]. Physical Review Letters, 2009, 102(18):183902. DOI: 10.1103/PhysRevLett.102.183902
    [17]
    CHEN W, ABEYSINGHE D C, NELSON R L, et al. Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination[J]. Nano Letters, 2009, 9(12):4320-4325. DOI: 10.1021/nl903145p
    [18]
    SCHADT M, STALDER M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 1996, 21(23):1948-1950. DOI: 10.1364/OL.21.001948
    [19]
    ZHAN Q, LEGER J. Focus shaping using cylindrical vector beams[J]. Optics Express, 2002, 10(7):324-331. DOI: 10.1364/OE.10.000324
    [20]
    SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3):207-209. DOI: 10.1364/OL.33.000207
    [21]
    ELLENBOGEN T, VOLOCHBLOCH N, GANANYPADOWICZ A, et al. Nonlinear generation and manipulation of Airy beams[J]. Nature Photonics, 2009, 3(7): 395-398. DOI: 10.1038/nphoton.2009.95
    [22]
    HONG X H, YANG B, ZHANG C, et al. Nonlinear volume holography for wave-front engineering[J]. Physical Review Letters, 2014, 113(16):163902. DOI: 10.1103/PhysRevLett.113.163902
    [23]
    LI L, LI T, WANG S M, et al. Plasmonic airy beam generated by in-plane diffraction[J]. Physical Review Letters, 2011, 107(12):126804. DOI: 10.1103/PhysRevLett.107.126804
    [24]
    MINOVICH A, KLEIN A E, JANUNTS N, et al. Generation and near-field imaging of Airy surface plasmons [J]. Physical Review Letters, 2011, 107(11):116802. DOI: 10.1103/PhysRevLett.107.116802
    [25]
    ZHANG P, WANG S, LIU Y, et al. Plasmonic Airy beams with dynamically controlled trajectories[J]. Optics Letters, 2011, 36(16):3191-3193. DOI: 10.1364/OL.36.003191
    [26]
    VOLOCH-BLOCH N, LEREAH Y, LILACH Y, et al. Generation of electron Airy beams[J]. Nature, 2013, 494(7437):331-335. DOI: 10.1038/nature11840
    [27]
    BRASSELET E, MURAZAWA N, MISAWA H, et al. Optical vortices from liquid crystal droplets[J]. Physical Review Letters, 2009, 103(10):103903. DOI: 10.1103/PhysRevLett.103.103903
    [28]
    LOUSSERT C, DELABRE U, BRASSELET E. Manipulating the orbital angular momentum of light at the micron scale with nematic disclinations in a liquid crystal film [J]. Physical Review Letters, 2013, 111(3): 037802. DOI: 10.1103/PhysRevLett.111.037802
    [29]
    BRASSELET E, LOUSSERT C. Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons [J]. Optics Letters, 2011, 36(5): 719-721. DOI: 10.1364/OL.36.000719
    [30]
    BARBOZA R, BORTOLOZZO U, ASSANTO G, et al. Harnessing optical vortex lattices in nematic liquid crystals [J]. Physical Review Letters, 2013, 111(9): 093902. DOI: 10.1103/PhysRevLett.111.093902
    [31]
    SLUSSARENKO S, MURAUSKI A, DU T, et al. Tunable liquid crystal q-plates with arbitrary topological charge[J]. Optics Express, 2011, 19(5):4085-4090. DOI: 10.1364/OE.19.004085
    [32]
    JI W. Liquid crystal and their optical-field control applications[D].Nanjing: Nanjing University, 2016: 42-50(in Chinese).
    [33]
    JI Z, ZHANG X, SHI B, et al. Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings[J]. Optics Letters, 2016, 41(2):336-339. DOI: 10.1364/OL.41.000336
    [34]
    ZHANG X Z, XU J J, LI W, et al. Based on laser direct writing method of the liquid crystal region micro-and orientation system: China, 201410108057.3[P]. 2014-03-19(in Chinese).
    [35]
    JI Zh Ch, ZHANG X Zh, ZHANG Y J, et al. Electrically tunable generation of vectorial vortex beams with micro-patterned liquid crystal structures[J]. Chinese Optics Letters, 2017, 15(7): 070501. DOI: 10.3788/COL
    [36]
    MARRUCCI L, MANZO C, PAPARO D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16):163905. DOI: 10.1103/PhysRevLett.96.163905
    [37]
    MARRUCCI L. Generation of helical modes momentum conversion in inhomogeneous liquid crystals[J]. Molecular Crystals and Liqud Crystals, 2008, 488(1): 148-162. DOI: 10.1080/15421400802240524
    [38]
    JIANG J J, ZHANG D Y, LI J F. Liquid crystal variable retarder development and electric-control retardation measurement[J]. Laser Technology, 2011, 35(5): 652-655(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201105021
    [39]
    MARRUCCI L. Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals[J]. Proceedings of the SPIE, 2008, 488(1):148-162. http://cn.bing.com/academic/profile?id=e857f178b4199b080a0dfe22216570d4&encoded=0&v=paper_preview&mkt=zh-cn
    [40]
    KARIMI E, PICCIRILLO B, MARRUCCI L, et al. Light propagation in a birefringent plate with topological charge[J]. Optics Letters, 2009, 34(8):1225-1227. DOI: 10.1364/OL.34.001225
    [41]
    KARIMI E, PICCIRILLO B, NAGALI E, et al. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates[J]. Applied Physics Letters, 2009, 94(23):231124. DOI: 10.1063/1.3154549
    [42]
    WANG W, LI G H, HAO D Zh, et al. Experimental study of electric-termo-optic effect of nematic liquid crystal[J]. Laser Technology, 2004, 28(3): 275-277(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200403004
    [43]
    ZOU Y Ch, SI L, TAO R M, et al. Research progress of liquid crystal based light beam steering technique[J]. Laser Technology, 2011, 35(3): 293-298(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201103002

Catalog

    Article views (6) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return