Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 43 Issue 4
Jul.  2019
Article Contents
Turn off MathJax

Citation:

Study on temperature and current control of distributed feedback laser diodes

  • Corresponding author: GUO Ruimin, guorm@nim.ac.cn
  • Received Date: 2018-09-10
    Accepted Date: 2018-11-10
  • In order to precisely control the temperature and current of distributed feedback lasers, the drive device of distributed feedback laser was designed by using digital signal processing chip.The device was used to set the reference voltage of the current and the temperature of the laser. After digital-to-analog conversion, through the temperature and current driving module, the reference voltage and the temperature were fed into the distributed feedback laser. And then, the device was used to drive distributed feedback lasers and experiments were carried out to verify the results. The results show that, within 40min, the temperature variation range and the standard difference are no more than 5mK and 0.7mK, respectively. The current variation range and the standard deviation are not more than 40μA and 6μA. When driving the semiconductor optical amplifier, the turn-off time is less than 1μs. The device has good instantaneous response characteristics and high temperature and current stability. The flow control module has good transient characteristics and can precisely control the temperature and current of distributed feedback lasers. The control device can be used to study optical cavity ring-down spectroscopy. It can controll distributed feedback lasers and drive the optical amplifiers to turn off the lasers.
  • 加载中
  • [1]

    WANG Q, GUO J J, CHEN W, et al. Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth[J]. Chinese Journal of Lasers, 2017, 44(1):0101004(in Chinese). doi: 10.3788/CJL
    [2]

    ZHU M J, HU F R, YANG H Y. Analysis of wavelength-tunable DFB laser based on GaN in communication band[J]. Laser Technology, 2016, 40(1):60-63(in Chinese).
    [3]

    LI D A, WANG T Y, ZHAO J M, et al. Influence of ambient temperature on the performance of the semiconductor laser[C] // International Conference on Optical Communications and Networks. New York, USA: IEEE, 2017: 1-3.
    [4]

    WANG H X, CHEN J D, CHANG T Y, et al. Research of modulation characteristics of distributed feedback laser[J]. Laser Technology, 2017, 41(6):836-840(in Chinese).
    [5]

    CHEN Y, LEHMANN K K, KESSLER J, et al. Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy [J]. Analytical Chemistry, 2013, 85(23):11250-11257. doi: 10.1021/ac401605s
    [6]

    LIBBRECHT K G, HALL J L. A low-noise high-speed diode laser current controller[J]. Review of Scientific Instruments, 1993, 64(8):2133-2135. doi: 10.1063/1.1143949
    [7]

    GUO F L, XU G P, HUANG B K. Costant temperature control systems for semiconductor lasers based on DRV595[J]. Laser Technology, 2017, 41(5):734-737(in Chinese).
    [8]

    XU W H, YANG M W, ZHU W, et al. Development of laser diode driver based on FPGA[J]. Infrared and Laser Engineering, 2005, 34(3):368-372(in Chinese).
    [9]

    WANG Z, SUN Q. The design of control system of semiconductor refrigeration piece based on STM32[J]. Electronic Design Engineering, 2015, 23(18):100-102(in Chinese).
    [10]

    HE Y T, LI R J, FEN J, et al. Design of high-precision constant-temperature control system based on DSP chip[J]. Instrument Technique and Sensor, 2017(1):70-73(in Chinese).
    [11]

    CONG M L, LI L, CUI Y S, et al. Design of high stability digital control driving system for semiconductor laser[J]. Optics and Precision Engineering, 2010, 18(7):1629-1636(in Chinese).
    [12]

    LI L L, SHI Y B, ZHAO P F, et al. High precision thermostat system with TEC for laser diode[J]. Infrared and Laser Engineering, 2014, 43(6):1745-1749(in Chinese).
    [13]

    LUO L, HU J Ch, WANG Ch J, et al. Design of high-precision driving power and temperature control circuit for semiconductor laser[J]. Laser Technology, 2017, 41(2):200-204(in Chinese).
    [14]

    QIU X B, LI N, SUN D Y, et al. Research on driving circuit for miniaturized high stable semiconductor laser[J]. Laser & Infrared, 2018, 48(4):469-475(in Chinese).
    [15]

    GAO P D, ZHANG F Q. Design and implementation of high precision temperature control system for semiconductor lasers[J]. Laser Technology, 2014, 38(2):270-273(in Chinese).
    [16]

    ZHONG Q R, JIANG H M, DAI J K, et al. Development situations of semiconductor laser controllers[J]. Optical Communication Technology, 2016, 40(5):52-54(in Chinese).
    [17]

    FAN H B, XIE H H. Study with high precision on three typical temperature measurement based on NTC thermistor[J]. Chinese Journal of Sensors and Actuators, 2010, 23(11):1576-1579(in Chinese).
    [18]

    SUN Q L. Study on the temperature characteristics of NTC thermistor[J]. Physical Experiment of College, 2013, 26(4):16-17(in Ch-inese).
    [19]

    JI J H, WU Ch Q, ZHAO Sh, et al. A method for improving the switch speed of SOA driver circuit up to ns-level[J]. Journal of Beijing Jiaotong University, 2008, 32(3):64-66(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article views(8993) PDF downloads(47) Cited by()

Proportional views

Study on temperature and current control of distributed feedback laser diodes

    Corresponding author: GUO Ruimin, guorm@nim.ac.cn
  • Division of Energy and Environmental Measurement Electromagnetic Environment Research Center, National Institute of Metro-logy, China, Beijing 100029, China

Abstract: In order to precisely control the temperature and current of distributed feedback lasers, the drive device of distributed feedback laser was designed by using digital signal processing chip.The device was used to set the reference voltage of the current and the temperature of the laser. After digital-to-analog conversion, through the temperature and current driving module, the reference voltage and the temperature were fed into the distributed feedback laser. And then, the device was used to drive distributed feedback lasers and experiments were carried out to verify the results. The results show that, within 40min, the temperature variation range and the standard difference are no more than 5mK and 0.7mK, respectively. The current variation range and the standard deviation are not more than 40μA and 6μA. When driving the semiconductor optical amplifier, the turn-off time is less than 1μs. The device has good instantaneous response characteristics and high temperature and current stability. The flow control module has good transient characteristics and can precisely control the temperature and current of distributed feedback lasers. The control device can be used to study optical cavity ring-down spectroscopy. It can controll distributed feedback lasers and drive the optical amplifiers to turn off the lasers.

引言
  • 分布反馈(distributed feedback,DFB)激光器具有窄线宽单模输出和输出波长稳定等特点,被广泛应用于光通信[2]、气体成分分析和科学实验研究等领域。温度和电流是DFB激光器的两个重要参量,精细调节这两个参量可以精确控制激光器输出的激光波长[3-4]。在基于DFB激光器的光腔衰荡光谱(cavity ring-down spectroscopy, CRDS)研究中,调节激光器温度和电流,改变激光器输出波长并实现激光模式和光腔模式之间的匹配,完成整个分子吸收谱线的测量[5]。传统的温度和电流控制器是由模拟电路组成的,控制精度较高,但无法实现自动化控制[6]。近年来,随着微型控制芯片的发展,单片机、数字信号处理(digital signal processing,DSP)芯片和现场可编程门阵列(field-programmable gate array,FPGA)芯片被应用在DFB激光器的控制电路中[7-10],促进其驱动系统小型化的同时,也进一步提升了驱动装置可靠性和自动化程度[11-15]。目前销售的商业控制器难以兼具高精度(温度控制mK级,电流控制μA级)、小体积和低成本的需求[16],且很难应用于小型化装置中,比如小型化光腔衰荡光谱装置。

    本文中开展基于软件控制的DFB激光器温度和电流的控制装置研究。研究中采用LDTC0520驱动模块,分别通过该模块的比例-积分(proportion integration,PI)负反馈回路和慢启动电压-电流转换来控制激光器温度和电流,并用C#语言编写上位机软件。采用该控制装置驱动DFB激光器,研究在不同温度和电流设定值下,温度和电流的时间稳定性。驱动光放大器开断激光, 研究该控制装置的瞬态响应特性。

1.   研究方案
  • 本文中研究的DFB激光器控制系统原理图如图 1所示。主要包括3个部分:参考电压设定模块、温度与电流驱动模块和DFB激光器模块。参考电压设定模块用于激光器温度和电流的设定,并将设定值以电压信号的方式输出到温度与电流驱动模块。温度与电流驱动模块的温度控制端和电流控制端连接DFB激光器模块两个蝶形底座的温度控制和电流控制接口,实时调节DFB激光器系统的温度值和电流值。图 1中的通用串行总线(universal serial bus, USB)数据采集卡(data acquisition, DAQ)用于稳定性试验中的数据采集。

    Figure 1.  Diagram of laser control system

  • 参考电压设定模块设计原理如图 2所示。主要包括DSP芯片(型号:TMS320F28335)和数模转换器(digital to analog conversion, DAC)(型号:DAC8552)。TMS320F28335的工作频率为150MHz,包含命令寄存器模块、逻辑控制模块和串行外设接口(serial peripheral interface,SPI)模块。DAC8552是16位双路输出数模转换器,包含命令寄存器和通道选择的逻辑电路,具有噪声小、稳定性好的特点。采用C#编写上位机(PC)软件,其与DSP芯片之间以RS-232串口方式进行通讯。

    Figure 2.  Diagram of setting module of reference voltage

    控制器工作时,由PC发送控制命令,设定控制温度T和电流I。DSP芯片根据所接收的命令通过SPI来控制数模转换器DAC8552输出的对应电压值。通过时序设计用通用输入/输出(general purpose input output,GPIO)管脚构建了一个1kHz的低速SPI通讯模块,用于控制两个DAC8552模块。数模转换器上的一个通道用于温度控制,另一个通道用于电流控制。本研究中,DAC8552输出电压幅值设定为5V,则输出电压的分辨率Vmin:

  • 研究中采用蝶形封装DFB激光二极管(型号:NLK1E5GAAA),对激光器进行光隔离后,连接蝶形封装半导体光放大器(semiconductor optical amplifier,SOA)。激光二极管和光放大器分别安装在两个蝶形激光器底座上(型号:LM412)。DFB激光器内部集成热敏电阻与微型半导体制冷片,两者紧贴激光器二极管。热敏电阻的阻值与温度关系符合以下公式[17-18]

    式中,T为激光器温度,T0为25℃对应的开尔文温度,即298.15K,RT0为25℃时对应的热敏电阻阻值,即10kΩ,B为热敏指数,其值为3410K。

  • 温度与电流驱动模块控制原理如图 3所示。主要包括电流控制和温度控制两部分,分别对应LDTC0520内部的FL500芯片和WTC3243芯片。

    Figure 3.  Diagram of driving module of current and temperature

    FL500芯片具有高精度、慢启动的特点,用于激光二极管的电流控制。该芯片采用5V驱动电源供电,根据输入端参考电压输出电流,其输入电压转电流参量为250mA/V。研究中,其输入端电压来自DAC8552的流控参考电压设定值,其激光电流正负输出端分别连接DFB激光器模块蝶形底座的正负输入端,用于驱动DFB激光器和光放大器。DAC8552输出电压最小分辨率为0.0763mV,可以计算出FL500芯片最小可设置的输出电流间隔Imin:

    式中,k是电压到电流的转换系数。

    温控芯片WTC3243外围电路简单,采用5V驱动电源供电,主要管脚有参考电压端、PI参量设定端、加热制冷输出端和热敏电阻接入端。其比例系数和积分系数分别为20A/V和2.2s。该芯片加热制冷输出端和热敏电阻接入端分别连接到蝶形底座的对应端口。研究中,WTC3243热敏电阻接入端电流恒定为10μA,则热敏电阻阻值变化与温控参考电压设定值变化之间的关系为:

    式中,ΔV为电压变量,ΔT为温度变量。

    由DAC8552输出电压最小分辨率为0.0763mV可以计算出,在25℃时可设置的最小温度变化值为1.99mK。该值随着温度增高而变大,30℃时为2.48mK。

2.   实验结果与讨论
  • 该研究中,待DFB激光器温度稳定后,24位USB数据采集卡以每秒1次的速率采集热敏电阻两端的电压值,并计算出其对应的电阻值。根据(2)式可以计算出该阻值对应的激光器温度值。实验中的采集时间为2500s,激光器温度设定值分别为25.1℃, 26.2℃, 27.3℃, 28.5℃, 29.6℃和30.7℃。实验结果如图 4所示。

    Figure 4.  Laser temperature vs. time

    在2500s的采集过程中,不同设定温度下激光器温度值均表现出较好稳定性,温控过程中没有明显的波动上升或下降过程。测量值与设定值有一定的偏差,但该偏差相对稳定。为了得到更准确的数据,计算了不同设定温度下,温度测量值的极差和标准差。结果如图 5所示。

    Figure 5.  The extreme deviation and standard deviation of the measured temperatur

    在40min内,5次测量的温度极差保持在5mK内,标准差小于0.7mK达到了较高的温度稳定性。在25℃时稳定性最好,极差小于2.5mK,标准差小于0.35mK, 温度越高,极差和标准差越大。由(4)式可知,温度越高,可设置的最小温度变化值越大,造成控制精度降低,最终引起测量值极差和标准差变大。

  • 该研究中,DFB激光器的温度设定为25℃,通过24位USB数据采集卡以每秒1次的速率采集LDTC0520模块激光电流输出端的电压值,该电压值通过电压转电流参量(250mA/V)换算为实际的激光器电流值。实验中,激光器电流设定值分别为80mA和100mA,实验结果如图 6所示。

    Figure 6.  Laser current vs. time

    在2500s的电流控制过程中,电流实测值围绕设定值波动,稳定性较好。经计算,电流设定值为80mA时,电流变化极差与标准差分别为37.3μA和5.7μA;设定值为100mA时,相应值分别为36μA和5.1μA,都达到了较高的稳定度。

  • SOA与DFB激光器有相似的结构与封装[19],两者安装在两个相同的蝶形激光器底座上。实验中,DFB激光器一直保持开通状态,其输出激光经过光纤隔离器后,进入SOA。SOA出射光通过空间耦合器转化为空间光,并照射到一反射率为99.98%的镜片上。采用上升时间仅为80ns的光电探测器接收透射光。

    实验中,让DAC8552向FL500输出一个频率为1kHz、幅值为0.4V的方波信号作为流控参考电压,用来设定SOA的电流输入,使SOA循环工作在开通-关断状态。通过一个示波器观察光电探测器输出的电压信号,该电压信号随时间变化曲线如图 7所示,反映了SOA输出光功率随参考电压的变化。电压从0.9V下降到0.1V的时间在1μs以内,由此可知SOA驱动电流下降时间小于1μs。SOA功率下降沿曲线未出现过流、浪涌等危险现象,说明研制的流控模块具有良好的瞬态特性。

    Figure 7.  Output optical voltage vs. time

    在光腔衰荡光谱研究中,需要在激光耦合入衰荡光腔后迅速关断激光来观测衰荡信号,声光调制器和SOA是在研究中常采用的两种光开关。但相比声光调制器,SOA可通过光纤链入光路,有效减小了装置的空间体积。采用本文中研制的装置驱动SOA,关断时间小于1μs,使其能够作为光开关快速关断激光。

3.   结论
  • 本文中利用LDTC0520模块、DSP芯片和数模转换器研制了高稳定DFB激光器温度和电流控制装置。研究5组不同设定温度下的温度稳定性,40min内测量的温度极差和标准差最大值仅为5mK和0.7mK。在电流稳定性研究中,40min内电流测量极差和标准差分别不超过40μA和6μA。基于SOA的高速光中断实验显示,输出光功率关断时间小于1μs,且具有良好的瞬间响应特性。本文中研制的控制装置可用于驱动光腔衰荡光谱装置中的DFB激光器,并可以驱动SOA作为光腔衰荡光谱装置的光开关。

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return