Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 43 Issue 3
Mar.  2019
Article Contents
Turn off MathJax

Citation:

Effect of focus location on photoacoustic signal of gold nanoparticles

  • Received Date: 2018-07-17
    Accepted Date: 2018-08-27
  • In order to analyze and study the influence of laser focusing position on photoasound signal of gold nanoparticles, ultrasound detectors were used to detect ultrasound and the state of solution was observed by CCD. The results show that, when the laser pulse is focused in the middle of the colorimeter, the photoacoustic signal is the ultrasonic signal of gold nanoparticles suspended in solution under the action of laser. When the laser is focused on the interface between the inner wall of the colorimetric dish and the solution, the photoacoustic signal duration of gold nanoparticles increases and becomes disordered. In this case, if the ultrasonic signal oscillates periodically, the solution of gold nanoparticles starts from the laser focus and flows at high speed along the laser direction. This research has certain reference significance for opening up a new research field of microfluidics.
  • 加载中
  • [1]

    HE J F, TAN Y. Development of photoacoustic in aging technology in biomedicine[J]. Laser Technology, 2007, 40(2):530-536(in Ch-inese).
    [2]

    WANG Zh G, YIN L, LIN Ch Y, et al. Sensitivity optimization of bimetallic film surface plasmon resonance sensor[J]. Laser Technology, 2017, 41(3):328-331(in Chinese).
    [3]

    TAN X X, WANG G J, WANG Zh B. Opened suspended core fiber chio based on surface plasma resonance enhancement mechanism. Laser Technology, 2016, 40(2):209-212(in Chinese).
    [4]

    WANG Y N, ZHANG Q H, ZHU Zh, et al. Laser streaming:Turning a laser beam into a flow of liquid[J]. Science Advances, 2017, 3(9):e1700555. doi: 10.1126/sciadv.1700555
    [5]

    DAVIES S J, EDWARDS C, TAYLOR G S, et al. Laser-generated ultrasound:Its properties, mechanisms and multifarious application[J]. Journal of Physics, 1993, D26(3):329-348.
    [6]

    VINCENZO A, ROBERTO P, MARCO F, et al. Surface plasmon resonance in gold nanoparticles:A review[J]. Journal of Physics:Condensed Matter, 2017, 29(20):203002. doi: 10.1088/1361-648X/aa60f3
    [7]

    LI W W, CHEN X Y. Gold nanoparticle for photoacoustic imaging[J]. Nanomedicine, 2015, 10(2):299-320. doi: 10.2217/nnm.14.169
    [8]

    CHENG X J, SUN R, YIN L, et al. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic of tumor in vivo[J]. Advanced Materials, 2017, 29(6):1604894. doi: 10.1002/adma.201604894
    [9]

    JU H, ROY R A, MURRAY T W.Gold nanoparticle targeted photo-acoustic cavitation for potential deep tissue imaging and therapy[J]. Biomedical Optics Express, 2013, 4(1):66-76.
    [10]

    LIGHTTHILL S J. Acoustic streaming[J]. Journal of Sound and Vibration, 1978, 61(3):391-418. doi: 10.1016/0022-460X(78)90388-7
    [11]

    VALERY B, BRAHIM M, DANIEL H, et al. Scaling and dimensional analysis of acoustic streaming jets[J]. Physics of Fluids, 2014, 26(9):093602. doi: 10.1063/1.4895518
    [12]

    BRAHIM M, VALERY B, DANIEL H, et al. Near field acoustic streaming jet[J]. Physical Review, 2015, E91(3):033011.
    [13]

    MICHAEL B D, LESLIE Y Y, JAMES R F. Frequency effects on the scale and behavior of acoustic streaming[J]. Physical Review, 2014, E89(1):013203.
    [14]

    JAMES F, LESLIE Y Y. Microscale acoustofluidics:Microfluidics driven via acoustics and ultrasonics[J]. Reviews of Modern Phy-sics, 2011, 83(2):647-687. doi: 10.1103/RevModPhys.83.647
    [15]

    LOTHAR S, ACHIM W, DAVID A W, et al. Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber[J]. MicrofluidNanofluid, 2012, 12(1/4):229-235.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article views(5293) PDF downloads(20) Cited by()

Proportional views

Effect of focus location on photoacoustic signal of gold nanoparticles

  • 1. Department of Electrical Information Engineering, Henan Institute of Engineering, Zhengzhou 451191, China
  • 2. Southwest Institute of Technical Physics, Chengdu 610041, China

Abstract: In order to analyze and study the influence of laser focusing position on photoasound signal of gold nanoparticles, ultrasound detectors were used to detect ultrasound and the state of solution was observed by CCD. The results show that, when the laser pulse is focused in the middle of the colorimeter, the photoacoustic signal is the ultrasonic signal of gold nanoparticles suspended in solution under the action of laser. When the laser is focused on the interface between the inner wall of the colorimetric dish and the solution, the photoacoustic signal duration of gold nanoparticles increases and becomes disordered. In this case, if the ultrasonic signal oscillates periodically, the solution of gold nanoparticles starts from the laser focus and flows at high speed along the laser direction. This research has certain reference significance for opening up a new research field of microfluidics.

引言
  • 随着纳米材料和纳米技术的发展,纳米金颗粒凭借其优越的光学特性和物理特性,在生物造影成像和癌症治疗检测等领域表现出了广阔的应用前景[1-3]。2017年,BAO科研团队利用金纳米颗粒水溶液,开发并实现了激光驱动宏观液流技术,进一步扩展了其应用[4]。在这些应用中,金纳米颗粒在激光作用下的光致超声现象起着重要的作用。纳米颗粒在入射激光的辐照下,吸收入射激光能量引起温升,引起纳米颗粒膨胀,以及纳米颗粒周围溶液汽化形成汽化腔,汽化腔迅速膨胀达到临界点而坍塌。激光脉冲持续加热,导致汽化腔按此过程持续振荡,同时产生超声波,即光声现象[5]。由于表面等离子体共振效应,金纳米颗粒对光具有很强的吸收特性,并且对吸收光的波长具有宽的调谐范围,所以,金纳米颗粒在光声效应领域具有广泛的应用和大量的研究[6-8]

    在激光驱动宏观液流技术中,涂覆在金纳米颗粒自组装微腔表面的金颗粒在激光作用下的超声现象是驱动液体发生宏观流动的本质,超声的性质直接影响液体是否发生流动,以及液体流动质量,所以研究金纳米颗粒在激光作用下产生超声的特性,以及激光聚焦位置对金纳米颗粒超声的影响至关重要。本文中在搭建激光驱动宏观液流技术平台基础上,对比分析了激光不同聚焦位置和液体不同流动状态时的超声信号。当激光聚焦在比色皿中间时,激光辐照悬浮在溶液中的金纳米颗粒,金纳米颗粒在激光的辐照下产生光致超声信号,光声信号持续时间较短;当激光聚焦在比色皿内壁和溶液交界面时,金纳米颗粒光致超声信号持续时间增加并且变得杂乱,当光致超声信号出现周期性振荡时,金纳米颗粒溶液发生高速流动。此研究对金纳米颗粒在激光作用下的光声现象,以及激光驱动宏观液流技术物理机理分析具有重要的指导作用。

1.   实验装置
  • 实验装置如图 1a所示。527nm脉冲激光(脉宽150ns,重复频率1kHz)经焦距为10cm的透镜聚焦在金纳米颗粒水溶液中,金纳米颗粒水溶液盛装在一四面透光的普通玻璃比色皿中,比色皿尺寸为10mm×10mm,并且固定在一沿激光传输方向可移动的2维移动平台上,通过移动2维移动平台,可以改变激光在金纳米颗粒溶液中的聚焦位置。超声波探测器固定在比色皿正上方,并浸没在溶液中。直径为50nm的金纳米颗粒直接与去离子水混合得到金纳米颗粒水溶液,溶液质量浓度为0.03mg/mL。金纳米颗粒紫外可见吸收谱如图 1b所示,从图中可以看出, 金纳米颗粒水溶液在525nm附近表现出强的局域等离子体共振特性,从而能够有效地吸收入射激光能量。

    Figure 1.  a—the setup of laser streaming and ultrasound   b—the transmission of gold nanoparticle solution

2.   结果与讨论
  • 将527nm激光分别聚焦在比色皿中间和比色皿内壁,即激光辐照溶液中的纳米金颗粒和比色皿壁上纳米金颗粒,超声传感器记录溶液发生流动和不流动时的超声信号如图 2所示。

    Figure 2.  Photoacoustic signal of gold nanoparticles with different laser focusing locations

    图 2所示结果可以看出,当527nm激光聚焦在比色皿中间时,也即527nm激光与悬浮在溶液中的纳米金颗粒相互作用时,超声探测器记录到明显的光致超声信号,圆形虚线框内信号即为溶液中金纳米颗粒在527nm激光作用下的光声信号,随后的声波信号为比色皿壁反射的回波信号,声波持续时间较短。当527nm激光聚焦在比色皿内壁和溶液交界面,而溶液未发生流动时,超声探测器检测到金纳米颗粒光声信号和比色皿壁反射的回波信号,但是和溶液中金纳米颗粒光声信号相比,比色皿壁上的金纳米颗粒在激光辐照下产生的光声信号持续时间增加且杂乱,明显叠加了其它信号。当金纳米颗粒溶液在激光驱动下发生高速流动,金纳米颗粒在激光辐照下的超声信号出现近似均匀的振荡峰(见图 2中液流超声曲线),即液体发生流动时,超声信号出现了周期调制。为了进一步分析金纳米颗粒在激光作用下的超声特性,对图 2中光声信号进行了傅里叶变换,如图 3所示。

    Figure 3.  Fourier transform of photoacoustic signal

    从金纳米颗粒光声信号快速傅里叶变化结果可以看出,激光聚焦位置和液体是否发生流动时的光声信号频谱具有很大的差异性。当激光聚焦在溶液中心时,激光仅和溶液中的金纳米颗粒发生作用,此时的光声信号主要为金纳米颗粒在激光作用下产生的光声信号,中心频率近似为1.1MHz;当激光聚焦在比色皿壁和溶液交界面时,但是溶液没有在激光的驱动下发生流动,此时出现多个频带,以中心频率在0.5MHz和1.1MHz的信号为主,此时光声信号主要为玻璃比色皿和金纳米颗粒在激光作用下光声信号的叠加;当激光聚焦在比色皿壁和溶液交界面,且溶液发生流动时,光声信号频带加宽,且具有明显的振荡特性,从而推动液体发生了高速流动。

    当激光聚焦在比色皿中间时,金纳米颗粒吸收入射激光能量产生温升,并迅速加热周围液体,金纳米颗粒和周围液体发生热膨胀从而发射如图 2所示的光声信号(见图 2中金纳米颗粒超声曲线)[9]。即当激光聚焦在比色皿中间时,以激光致金纳米颗粒光声信号为主。然而,当激光聚焦在比色皿内壁和溶液交界面时,由于入射激光功率密度很高,比色皿内壁在强激光作用下产生损伤。同时,随着辐照时间的增加,逆着激光传输方向形成一金纳米颗粒自组装微腔,金纳米颗粒自组装微腔呈倒锥形,如图 4a所示。在金纳米颗粒微腔的作用下,金纳米颗粒光致超声信号出现周期性振荡,从而推动金纳米颗粒溶液发生高速流动,如图 4b所示。声波驱动流体时,液体驱动力与声波传播方向一致,并且与声波衰减率成正比,所以水平方向液体的流动必然由水平方向传播的超声产生[10-15]。在激光作用下,由于纳米颗粒自组装作用,在比色皿壁形成金纳米颗粒涂覆微腔,微腔表面金纳米颗粒光声信号由于腔的存在而不再发散,在垂直于激光传播方向上的两个比色皿壁之间振荡,从而驱动比色皿中液体沿激光传播方向发生高速流动。

    Figure 4.  a—Au nanoparticle-decorated cavity   b—laser streaming

3.   结论
  • 综上所述,对比分析了溶液中金纳米颗粒和比色皿壁涂覆金纳米颗粒在激光作用下的光声信号,以及产生的光声信号对液体流动的影响。当激光聚焦在比色皿中间时,悬浮在溶液中的金纳米颗粒在激光作用下产生光致超声信号,中心频率位于1.1MHz;当激光聚焦在比色皿壁和溶液界面时,光声信号为比色皿和纳米金颗粒在激光作用下所产生声信号的叠加,光声信号频带加宽;如果比色皿壁在激光作用下产生倒锥形金纳米颗粒涂覆自组装微腔,表面涂覆纳米金颗粒产生的光声信号,在倒锥形金纳米颗粒自组装微腔的作用下在两比色皿之间振荡,从而使光声信号表现为周期性振荡信号,同时驱动金纳米颗粒溶液发生高速流动。此研究对于研究金纳米颗粒在激光作用下的光声现象,以及激光驱动宏观液流技术物理机理分析具有重要的指导作用,同时开辟了一个新的微流控研究领域。

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return