Advanced Search
XIE Pengfei, PENG Runwu, XIE Haiqing. Focal shift of polychromatic Hermite-Gaussian beams in dispersion lens system[J]. LASER TECHNOLOGY, 2019, 43(3): 406-410. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.022
Citation: XIE Pengfei, PENG Runwu, XIE Haiqing. Focal shift of polychromatic Hermite-Gaussian beams in dispersion lens system[J]. LASER TECHNOLOGY, 2019, 43(3): 406-410. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.022

Focal shift of polychromatic Hermite-Gaussian beams in dispersion lens system

More Information
  • Received Date: June 10, 2018
  • Revised Date: July 07, 2018
  • Published Date: May 24, 2019
  • In order to know effect of bandwidth on the focused properties and focal shift of Hermite-Gaussian (H-G) beam, propagation formula of H-G beams passing through a dispersion lens system with polychromatic TEM11 mode and TEM22 mode was obtained by using diffraction integral. The focused intensity distribution was studied by numerical calculation. The effect of bandwidth on focal shift of both modes were analyzed. The results show that the focal shifts of H-G beams with TEM11 mode and TEM22 mode increase with the increase of the bandwidth and depend on the relative bandwidth. Focal shift of TEM22 mode is greater than that of TEM11 mode when relative bandwidth is smaller than 0.25 whereas the latter is somewhat greater than the former when relative bandwidth exceeds 0.25. The principle maximum intensity and the secondary maximum intensity of TEM22 mode on the axis compete each other with the vary of bandwidth and then the axial primary maximum intensity transits from one place to another. The results are helpful for further application of the polychromatic H-G beams.
  • [1]
    LI Y, WOLF E. Focal shifts in diffracted converging spherical waves[J]. Optics Communications, 1981, 39(4):211-215. DOI: 10.1016/0030-4018(81)90108-5
    [2]
    LI Y, WOLF E. Focal shift in focused truncated Gaussian beams[J]. Optics Communications, 1981, 42(3):151-156. http://cn.bing.com/academic/profile?id=2eb75daf514967502eeb1be0eff7f7fb&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    MARTÍNE-CORRAL M, CABALLERO M T, MUÑOZ-ESCRIVÁ L, et al. Focal-shift formula in apodized non-telecentric focusing systems[J]. Optics Letters, 2001, 26(19):1501-1504. DOI: 10.1364/OL.26.001501
    [4]
    KEIR C N, ELIO A A, STEVEN M B. Measurement of the effective focal shift in an optical trap[J]. Optics Letters, 2005, 30(22):1318-1320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eeb71ea455bac9d5d695a689fad4b824
    [5]
    GHAFARY B, SIAMPOOR H, ALAVINEJAD M. Focal shift for off-axial partially coherent flat topped beams passing a thin lens[J]. Optics & Laser Technology, 2010, 42(5):755-759. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=061741a59f0c925468e9342c2fe5e442
    [6]
    YUN M J, LIANG W, KONG W J, et al. Transverse superresolution and focal shift with rotational tunable phase mask[J]. Optics Communications, 2010, 283(10):2079-2083. DOI: 10.1016/j.optcom.2010.01.039
    [7]
    ALAVINEJAD M, ROWSHANI A R, GHAFARY B. Focal shift and focal switch of phase-lock partially coherent flat-topped array beams passing through an aligned and misaligned lens system with aperture[J]. Optics and Lasers in Engineering, 2012, 50(9):1341-1349. DOI: 10.1016/j.optlaseng.2012.02.006
    [8]
    YU Y T, ZAPPE H. Theory and implementation of focal shift of plasmonic lenses[J]. Optics Letters, 2012, 37(9):1592-1594. DOI: 10.1364/OL.37.001592
    [9]
    PENG R W, LI L, LI Y J, et al. Positive and negative focal shifts of an apertured supercontinuum laser with rectangular spectrum[J]. Optics Communications, 2012, 298/299(1):34-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a248f72cbc59fe48bc18e172e842da3c
    [10]
    PENG R W, LI L, LI Y J, et al. Effect of spectrum property on a focused supercontinuum laser[J]. Optics Communications, 2013, 309(15):26-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a1f087962dfce3f5d13b4dd12d5810b
    [11]
    REN Zh Ch, QIAN Sh X, TU Ch H, et al. Focal shift in tightly focused Laguerre-Gaussian beams[J]. Optics Communications, 2015, 334(1):156-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=405b813071258c60ec3539eebf98bb9e
    [12]
    PENG Ch B. Observation of focal point shift in solid immersion mi-rror[J]. Optics Express, 2015, 23(2):1498-1504. DOI: 10.1364/OE.23.001498
    [13]
    HE Sh M, WANG Zh H, LIU Q F, et al. Study of focal shift effect in planar GaN high contrast grating lenses[J]. Optics Express, 2015, 23(23):29360-29368. DOI: 10.1364/OE.23.029360
    [14]
    MA R, LI Y T, LIU Y M, et al. Focal shift of nano-optical lens a-ffected by periodic resonance with substrate[J]. IEEE Photonics Journal, 2016, 8(6):4502309. https://ieeexplore.ieee.org/document/7593321/
    [15]
    ZHANG M H, CHEN Y H, LIU L, et al. Focal shift of a focused partially coherent Laguerre-Gaussian beam of all orders[J]. Journal of Modern Optics, 2016, 63(21):2226-2264. DOI: 10.1080/09500340.2016.1191687
    [16]
    ZHANG M H, CHEN Y H, CAI Y J, et al. Effect of the correlation function on the focal shift of a partially coherent beam[J]. Journal of the Optical Society of America, 2016, A33(12):2509-2515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3094437157c4b0be95b9c9ca5a69c85
    [17]
    PENG J, CUI Zh F, QU J. Solution and focus property of the nonparaxial vector beams in the parabolic coordinates[J].Laser Technology, 2014, 38(5):703-708(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201405027
    [18]
    ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere[J]. Laser Technology, 2016, 40(5):750-755(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201605028
    [19]
    ZHANG B Y, PENG R W, ZHANG W. Bandwidth-induced focal switch in broadband laser with rectangular spectrum[J]. Laser Technology, 2017, 41(1):138-140(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201701028
    [20]
    ZHAO J H, WANG Q, ZHU B W, et al. Compact focusing properties of radial vector beam with vortex phase encoding[J]. Laser Technology, 2017, 41(2):187-190(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201702008
    [21]
    JI X L, ZHANG E T, LÜ B D. Spreading of spatially partially coherent polychromatic beams in atmospheric turbulence[J]. Optik, 2008, 119(14):689-694. DOI: 10.1016/j.ijleo.2007.01.016
    [22]
    MAO H D, ZHAO D M. Second-order intensity-moment characteristics for broadband partially coherent flat-topped beams in atmospheric turbulence[J]. Optics Express, 2010, 18(2):1741-1755. DOI: 10.1364/OE.18.001741
    [23]
    MALITSON I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 1965, 55(10):1205-1209. DOI: 10.1364/JOSA.55.001205
  • Cited by

    Periodical cited type(3)

    1. 靳龙, 张兴强. 圆形周期介质内艾里光束的传输特性. 激光技术. 2019(03): 432-436 . 本站查看
    2. 许江勇, 周光付, 任建军, 周波. LHM的新颖物理性质. 兴义民族师范学院学报. 2019(03): 106-110 .
    3. 张鑫. 基于虚拟现实的室内照明均一性智能控制系统设计. 长春大学学报. 2019(10): 45-49 .

    Other cited types(0)

Catalog

    Article views (4) PDF downloads (2) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return