Citation: | XIE Pengfei, PENG Runwu, XIE Haiqing. Focal shift of polychromatic Hermite-Gaussian beams in dispersion lens system[J]. LASER TECHNOLOGY, 2019, 43(3): 406-410. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.022 |
[1] |
LI Y, WOLF E. Focal shifts in diffracted converging spherical waves[J]. Optics Communications, 1981, 39(4):211-215. DOI: 10.1016/0030-4018(81)90108-5
|
[2] |
LI Y, WOLF E. Focal shift in focused truncated Gaussian beams[J]. Optics Communications, 1981, 42(3):151-156. http://cn.bing.com/academic/profile?id=2eb75daf514967502eeb1be0eff7f7fb&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
MARTÍNE-CORRAL M, CABALLERO M T, MUÑOZ-ESCRIVÁ L, et al. Focal-shift formula in apodized non-telecentric focusing systems[J]. Optics Letters, 2001, 26(19):1501-1504. DOI: 10.1364/OL.26.001501
|
[4] |
KEIR C N, ELIO A A, STEVEN M B. Measurement of the effective focal shift in an optical trap[J]. Optics Letters, 2005, 30(22):1318-1320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eeb71ea455bac9d5d695a689fad4b824
|
[5] |
GHAFARY B, SIAMPOOR H, ALAVINEJAD M. Focal shift for off-axial partially coherent flat topped beams passing a thin lens[J]. Optics & Laser Technology, 2010, 42(5):755-759. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=061741a59f0c925468e9342c2fe5e442
|
[6] |
YUN M J, LIANG W, KONG W J, et al. Transverse superresolution and focal shift with rotational tunable phase mask[J]. Optics Communications, 2010, 283(10):2079-2083. DOI: 10.1016/j.optcom.2010.01.039
|
[7] |
ALAVINEJAD M, ROWSHANI A R, GHAFARY B. Focal shift and focal switch of phase-lock partially coherent flat-topped array beams passing through an aligned and misaligned lens system with aperture[J]. Optics and Lasers in Engineering, 2012, 50(9):1341-1349. DOI: 10.1016/j.optlaseng.2012.02.006
|
[8] |
YU Y T, ZAPPE H. Theory and implementation of focal shift of plasmonic lenses[J]. Optics Letters, 2012, 37(9):1592-1594. DOI: 10.1364/OL.37.001592
|
[9] |
PENG R W, LI L, LI Y J, et al. Positive and negative focal shifts of an apertured supercontinuum laser with rectangular spectrum[J]. Optics Communications, 2012, 298/299(1):34-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a248f72cbc59fe48bc18e172e842da3c
|
[10] |
PENG R W, LI L, LI Y J, et al. Effect of spectrum property on a focused supercontinuum laser[J]. Optics Communications, 2013, 309(15):26-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a1f087962dfce3f5d13b4dd12d5810b
|
[11] |
REN Zh Ch, QIAN Sh X, TU Ch H, et al. Focal shift in tightly focused Laguerre-Gaussian beams[J]. Optics Communications, 2015, 334(1):156-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=405b813071258c60ec3539eebf98bb9e
|
[12] |
PENG Ch B. Observation of focal point shift in solid immersion mi-rror[J]. Optics Express, 2015, 23(2):1498-1504. DOI: 10.1364/OE.23.001498
|
[13] |
HE Sh M, WANG Zh H, LIU Q F, et al. Study of focal shift effect in planar GaN high contrast grating lenses[J]. Optics Express, 2015, 23(23):29360-29368. DOI: 10.1364/OE.23.029360
|
[14] |
MA R, LI Y T, LIU Y M, et al. Focal shift of nano-optical lens a-ffected by periodic resonance with substrate[J]. IEEE Photonics Journal, 2016, 8(6):4502309. https://ieeexplore.ieee.org/document/7593321/
|
[15] |
ZHANG M H, CHEN Y H, LIU L, et al. Focal shift of a focused partially coherent Laguerre-Gaussian beam of all orders[J]. Journal of Modern Optics, 2016, 63(21):2226-2264. DOI: 10.1080/09500340.2016.1191687
|
[16] |
ZHANG M H, CHEN Y H, CAI Y J, et al. Effect of the correlation function on the focal shift of a partially coherent beam[J]. Journal of the Optical Society of America, 2016, A33(12):2509-2515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3094437157c4b0be95b9c9ca5a69c85
|
[17] |
PENG J, CUI Zh F, QU J. Solution and focus property of the nonparaxial vector beams in the parabolic coordinates[J].Laser Technology, 2014, 38(5):703-708(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201405027
|
[18] |
ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere[J]. Laser Technology, 2016, 40(5):750-755(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201605028
|
[19] |
ZHANG B Y, PENG R W, ZHANG W. Bandwidth-induced focal switch in broadband laser with rectangular spectrum[J]. Laser Technology, 2017, 41(1):138-140(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201701028
|
[20] |
ZHAO J H, WANG Q, ZHU B W, et al. Compact focusing properties of radial vector beam with vortex phase encoding[J]. Laser Technology, 2017, 41(2):187-190(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201702008
|
[21] |
JI X L, ZHANG E T, LÜ B D. Spreading of spatially partially coherent polychromatic beams in atmospheric turbulence[J]. Optik, 2008, 119(14):689-694. DOI: 10.1016/j.ijleo.2007.01.016
|
[22] |
MAO H D, ZHAO D M. Second-order intensity-moment characteristics for broadband partially coherent flat-topped beams in atmospheric turbulence[J]. Optics Express, 2010, 18(2):1741-1755. DOI: 10.1364/OE.18.001741
|
[23] |
MALITSON I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 1965, 55(10):1205-1209. DOI: 10.1364/JOSA.55.001205
|
1. |
靳龙, 张兴强. 圆形周期介质内艾里光束的传输特性. 激光技术. 2019(03): 432-436 .
![]() | |
2. |
许江勇, 周光付, 任建军, 周波. LHM的新颖物理性质. 兴义民族师范学院学报. 2019(03): 106-110 .
![]() | |
3. |
张鑫. 基于虚拟现实的室内照明均一性智能控制系统设计. 长春大学学报. 2019(10): 45-49 .
![]() |