Advanced Search
LIU Tingjian, HAO Xiaojian. Study on laser heating of laser test system for thermocouple time constant[J]. LASER TECHNOLOGY, 2019, 43(2): 251-255. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.019
Citation: LIU Tingjian, HAO Xiaojian. Study on laser heating of laser test system for thermocouple time constant[J]. LASER TECHNOLOGY, 2019, 43(2): 251-255. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.019

Study on laser heating of laser test system for thermocouple time constant

More Information
  • Received Date: April 15, 2018
  • Revised Date: May 08, 2018
  • Published Date: March 24, 2019
  • In order to provide the reliable step temperature signal in thermocouple time constant test, optimize the feedback control effect, further shorten the rising delay time of step temperature-rising signal and ensure the accuracy of thermocouple time constant measurement, the static temperature-voltage calibration was carried out for the high-speed radiation temperature measurement module by using medium-temperature blackbody furnace.The relationship between pulse width and temperature of single pulse width modulation (PWM) was obtained by heating the thermocouple with a laser.The nonlinear relationship between the voltage of infrared radiation thermometer module and the blackbody temperature, pulse width of PWM wave and temperature was analyzed theoretically.Experimental verification was provided for the further optimization of control effect and the establishment of system mathematical model.The results show that output voltage of infrared radiation thermometer module is quadratic to blackbody temperature and pulse width of single PWM wave is cubic to temperature.The experimental results can provide a theoretical basis for the controller to adjust PWM pulse width (duty cycle) by feedback control.
  • [1]
    JIA Ch, CAI J, XIONG Zh H.A temperature sensor and dynamic calibration method[J].China Science and Technology Information, 2017, 29(23):56-57(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_43ba5a3a1691e9e6ba4649fb1293f1e3
    [2]
    GONG Y J.Research on key technologies of pure water hydraulic control valve[D]. Hangzhou: Zhejiang University, 2005: 1-171(in Ch-inese).
    [3]
    WU F, YANG X Y, WANG L.Study on measuring time constants of surface temperature sensors[J].Measurement Technology, 2014, 34(4):60-62(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkjcjs201404019
    [4]
    SUN H J, LI W J, LI J Q, et al. A thermocouple time constant test system[J].Journal of China University of Metrology, 2017, 28(2):146-152(in Chinese).
    [5]
    ZHAO X M, WANG W L, LI Y F, et al. Temperature sensor's dyna-mic characteristic compensation during the test of flame temperature flied[J].Chinese Journal of Sensors and Actuators, 2017, 30(5):735-741(in Chinese).
    [6]
    TANG W B.Research on dynamic response rule of thermocouple for one type of turboprop engines combustor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-83(in Chinese).
    [7]
    ZHAO Sh A, LIAO L, CHEN Y.1700℃ hot wind tunnel for thermal calibration[J].Metrology & Measurement Technology, 2000, 43(4):3-6(in Chinese).
    [8]
    DING J, TANG X, YANG S J, et al. Dynamic characteristics calibration of temperature sensor based on miniaturized deflagrating generation equipment[J].Chinese Journal of Sensors and Actuators, 2018, 31(2):195-201(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cgjsxb201802007
    [9]
    HAO X J, ZHOU H Ch, LI K J, et al. Application of CO2 laser to response time measurement of surface[J].Chinese Journal of Scientific Instrument, 2007, 28(6):1040-1044(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb200706015
    [10]
    HAO X J, LI K J, LIU J, et al. Traceability dynamic calibration of temperature sensor based on CO2 laser[J].Acta Armamentarii, 2009, 30(2):156-159(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb200902006
    [11]
    WANG W G.Survey of radiation thermometry technology[J].Journal of Astronautic Metrology and Measurement, 2005, 25(4):20-24(in Chinese).
    [12]
    YAN M, PENG Ch W, YAN Y H, et al. Principle and error analysis of infra-red temperature measurement[J].Journal of Hunan University(Natural Science Edition), 2004, 49(5):110-112(in Chinese).
    [13]
    LI J, LIU M D, ZENG Y K, et al. Research on non-contact infrared temperature measurement[J].Piezoelectrics & Acoustooptics, 2001, 23(3):202-205(in Chinese).
    [14]
    DUAN X G, HAO X J.Study on step temperature rise signal in thermocouple time constant test[J].Laser Technology, 2018, 42(2):192-195(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201802010
    [15]
    HAO X J, ZHANG G F, ZAN Q B.Thermocouple time constant test system and uncertainty analysis based on semiconductor lasers[J].Laser & Optoelectronics Progress, 2016, 53(8):81408(in Ch-inese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201608030
    [16]
    LI W J, SUN H J, ZHENG Y J.Estimating transfer function models for sheathed thermocouple[J].Chinese Journal of Sensors and Actuators, 2017, 30(7):1044-1049(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cgjsxb201707013
    [17]
    WANG X N, YU F Zh, YANG S J, et al. Study of TFTC dynamic character based on lumped capacitance method[J].Chinese Journal of Sensors and Actuators, 2014, 27(12):1627-1631(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cgjsxb201412008
    [18]
    WU P, LIN T.Research on identification modeling of sheathed thermocouple sensor based on hybrid QGA-SVM[J].Chinese Journal of Scientific Instrument, 2014, 35(2):343-349(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201402015
    [19]
    ZHANG P, XUAN Y M, LI Q.Development on thermal contact resistance[J].CIESC Journal, 2012, 63(2):335-349(in Chinese).
    [20]
    WU D H, ZHAO W, HUANG S L, et al. Research on improved FLANN for sensor dynamic modeling[J].Chinese Journal of Scientific Instrument, 2009, 30(2):362-367(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb200902026
  • Related Articles

    [1]ZHANG Peng, FENG Zhihua, ZHANG Pengfei, ZHAO Yuanming, RUAN Youtian, HAN Wenjie, ZHANG Hui, KANG Zhaoyang. Frequency modulation continuous wave laser ranging technique utilized matched filtering[J]. LASER TECHNOLOGY, 2025, 49(1): 53-61. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.009
    [2]JIAN Duo, LIU Min, HE Ding-ding, LI Dan, LIAO Zhou-yi. Research of photonic crystal fiber with high nonlinear flattened dispersion property[J]. LASER TECHNOLOGY, 2013, 37(2): 187-190. DOI: 10.7510/jgjs.issn.1001-3806.2013.02.012
    [3]CHEN Juan, GE Weng-ping, WANG Xiao-wei. Design of a novel octagonal photonic crystal fiber with fiat dispersion and high nonlinearity[J]. LASER TECHNOLOGY, 2012, 36(4): 480-484. DOI: 10.3969/j.issn.1001-806.2012.04.011
    [4]JING Ning, WANG Zhi-bin, ZHANG Ji-long, CHEN Yuan-yuan. 弹光调制非线性光程差干涉信号的快速反演[J]. LASER TECHNOLOGY, 2012, 36(2): 268-270,288. DOI: 10.3969/j.issn.1001-3806.2012.02.033
    [5]CHEN Yan-bei, LU Jian, Ni Xiao-wu, XU Li-jun, ZHANG Xi-he. Numerical simulation of laser heating of metal with three absorptivity models[J]. LASER TECHNOLOGY, 2009, 33(6): 622-625. DOI: 10.3969/j.issn.1001-3806.2009.06.018
    [6]SUN Tai-long, LI Qiang-hua, LIU Jing-hui, LIU Ying. Study on photonic crystal fibers with high nonlinearity and flattened dispersion[J]. LASER TECHNOLOGY, 2008, 32(3): 330-333.
    [7]HUANG Xiao-qin, CUI Yi-ping. Study on the third harmonic generation induced by the second-order cascading in nonlinear photonic crystal[J]. LASER TECHNOLOGY, 2004, 28(4): 363-365.
    [8]YANG Zhi-qing, WU Deng-xi, ZHEN Yong-chao. Study of angular non-linearity in 2-D optical scanning[J]. LASER TECHNOLOGY, 2004, 28(3): 262-265.
    [9]Wang Yang, Lu Hua, Tan Jianguo. A study on laser bending of sheet metal[J]. LASER TECHNOLOGY, 2003, 27(3): 175-177.
    [10]Zha Zizhong, Hu Yi. Realization of laser protection using nonlinear optics princinples[J]. LASER TECHNOLOGY, 1994, 18(2): 69-73.
  • Cited by

    Periodical cited type(5)

    1. 李岩峰,李佳,魏娟,马霄汉. 热电偶动态校准系统设计及动态性能评估方法. 电子质量. 2024(04): 96-100 .
    2. 曾敏,谢剑醒,李智涛,杨辉. 基于EKF的热压焊温度控制方法建模与仿真. 华南理工大学学报(自然科学版). 2023(09): 11-18 .
    3. 姜帅,杨威,胡俊宏,夏春明,王旭东. 热电偶时间常数测量分拣系统研究. 工业仪表与自动化装置. 2021(03): 30-34 .
    4. 郝晓剑,闫庆丰. 高斯脉冲激光激励热电偶时间常数测试及有限元仿真. 应用激光. 2020(03): 526-531 .
    5. 纳鑫,谢建斌,徐立新,王良璧. 一种用于高速气流瞬态测温的快速响应热电偶. 科学通报. 2019(31): 3223-3231 .

    Other cited types(6)

Catalog

    Article views (7) PDF downloads (6) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return