HTML
-
实验材料为内径210mm、高65mm、壁厚10mm的高速列车集电环,形状如图 1所示。材质为25#钢,化学成分如表 1所示。为便于研究,采用线切割方法从集电环上切取试样,制成厚度5mm、大小为50mm×20mm的试样。为了模拟集电环在实际工况下产生的表面约100μm厚的锈蚀层,在室温条件下,将试样浸泡在质量分数为0.035的NaCl溶液中,浸泡不同时间段后采用千分尺测量平均锈蚀层厚度,最终确定浸泡120h锈蚀层厚度可达100μm。
element C Si Mn S P Ni Cr Fe mass fraction 0.0022~0.0029 0.0017~0.0037 0.0050~0.0080 ≤0.00035 ≤0.00035 ≤0.0030 ≤0.0025 balance Table 1. Chemical compositions (mass fraction) of steel 25#
-
实验中所选用的脉冲激光器为IPG公司生产的掺镱脉冲光纤激光器,型号为YLP-1-120-50-50-HC-RG,设备参量如表 2所示。
parameters values wavelength 1064nm spot diameter 0.02mm pulse width 100ns focal length 16cm maximum average power 50W pulse repetition frequency 50kHz~100kHz Table 2. Parameters of laser cleaning equipment
-
激光光斑的直径小,低碳钢的导热性能好,激光能量能够很快传导至光斑边缘。所以, 为了提高清洗效率,选取激光恰好辐射试样整个表面。当激光垂直入射时,激光光斑中心距d和光斑半径R满足关系式R=dcos45°时(如图 2所示),相邻对角线的光斑之间恰好相切,激光能够完全辐射到试样表面,即光斑搭接率为29.3%。脉冲激光的光斑中心距d由脉冲激光的激光重复频率f和激光扫描速率v确定, 即满足关系式:
清洗效果主要由辐射到表面的激光能量决定,而激光能量由激光功率和激光重复频率决定。保持激光重复频率为50kHz不变,在6W~20W范围内调节激光功率,结合清洗效果和清洗效率,当激光功率为12W时, 清洗效果最好。采用正交实验,再选取激光功率分别为12W, 14W, 16W,在50kHz~90kHz范围内调节激光重复频率,当激光功率为16W、激光重复频率为70kHz时, 清洗效果最好。根据(1)式,已知激光光斑中心距和激光重复频率后,确定激光扫描速率为1.0m/s。选取脉冲光纤激光器的固定焦距为16cm。最终确定最优激光清洗参量为:激光功率16W,激光重复频率70kHz,激光扫描速率1.0m/s。试样清洗效果对比如图 3所示。
1.1. 实验材料和试样制备
1.2. 实验设备
1.3. 实验工艺参量优化
-
激光照射到污染物表面,会有部分激光透过污染物照射到金属基底表面,与金属基底相互作用,使金属表面温度升高,还可能使金属基底表面发生重熔。采用JSM-6301F场发射扫描电子显微镜(scanning electron microscope, SEM),对试样表面进行观察,如图 4所示。图 4表明,原始试样能明显看到集电环表面经机加工的痕迹,而激光除锈的试样表面有激光辐射后留下的光斑痕迹和由于腐蚀不均匀留下的深度不同的腐蚀坑。光斑痕迹没有明显的重熔现象,表明作用到金属基底表面的激光能量还没有到达金属基底的熔点。光斑痕迹主要是锈蚀在脉冲激光的辐射下受热膨胀后对金属基底产生的热膨胀力和激光加热使金属基底表面温度升高造成的。通过JSM-6301F场发射扫描电镜观察发现,金属基底经激光清洗后表面没有发生重熔现象。
但在激光与金属基底作用时金属基底表面温度升高,可能使基底表面发生相变。由于激光清洗对金属基底表面影响深度小,不宜对金属基底表面进行处理,所以对金属基底的截面进行金相组织观察。采用蔡司Observer.Z1m金相显微镜对原始试样和经激光清洗后的试样进行显微组织的观察,如图 5所示。金属基底是25#钢,室温下组织为铁素体和珠光体,经激光清洗后表面组织没有发生明显变化。
分析认为,由于金属基底材料相对于表面锈蚀状态而言,对激光的吸收率较低,同时激光清洗选用的激光能量也很低,加上加热时间短,试样表面温度没有达到金属基底的相变温度,所以金属基底表面显微组织没有发生明显的变化。
-
由于激光清洗对金属基底的影响深度很小,同时集电环在实际工况中表面锈蚀不均匀,会有深度不同的腐蚀坑存在,所以采用LECO LM247AT型维氏硬度计,载荷10g,保压时间15s,对经激光清洗后试样的截面进行硬度测试。由于压痕直径大约10μm,选取距激光清洗表面约10μm处沿厚度方向每隔10μm测取硬度值,如图 6所示。在同一深度方向选取不同位置的3个点进行显微硬度测试取平均值,其硬度表征结果如图 7所示。结果表明,经激光清洗后金属基底与材料内部硬度(反映不受激光影响的原始硬度)相比,没有发生明显变化。硬度出现波动的原因在于所用压入载荷很小以及材料本身的不均匀性,使得压痕尺寸与晶粒大小相当,导致压痕位置可能处于铁素体基体或珠光体的不同位置上。
-
传统的拉伸试验,由于制样尺寸的限制,只能对较大尺寸的基体材料整体的力学性能进行评价,不能很好地表征出金属材料表面及近表面的力学性能。对于本研究而言,激光清洗的表面影响深度在10μm左右,如采用传统拉伸试样方法,势必获得错误结果。如何解决这一问题,已成为本领域的难题。
通过比较,本研究中采用了球压法评价表面力学性能的技术和设备(检测装置示意图如图 8所示),通过监测在材料表面施加压痕过程中的载荷和位移值变化,获得被测材料的载荷-位移关系曲线(p-h曲线),采用一套特殊算法,可以获得被测材料的弹性模量、屈服强度、抗拉强度、应变硬化指数以及延伸率等多种力学性能参量,从而完成金属材料表面数十微米范围内的力学性能表征[18]。
Figure 8. Schematic diagram of rapid detection device for mechanical properties of IBIS-2 ball pressing method
根据所要表征的材料,对IBIS-2型球压法力学性能快速检测装置进行参量调节,确定位移极限、算法类型等,选取试样中心位置5个不同点,对原始试样和经激光清洗试样进行力学性能表征,检测结果如表 3、表 4所示。
detection point
numberyield strength/
MPatensile
strength/MPastrain hardening
exponent nelongation/
%1 348.7 575.9 0.179 22.57 2 353.7 577.2 0.176 22.20 3 318.0 570.2 0.199 25.02 4 349.2 593.8 0.187 23.59 5 305.6 573.8 0.211 26.43 average value 335.0 578.2 0.190 23.96 Table 3. Mechanical properties from the indentation experiments for original samples
detection point
numberyield strength/
MPatensile
strength/MPastrain hardening
exponent nelongation/
%1 320.9 549.4 0.198 22.36 2 314.0 571.2 0.203 25.48 3 278.5 546.6 0.220 27.56 4 336.1 580.0 0.190 23.95 5 335.5 570.3 0.186 23.42 average value 317.0 563.5 0.199 24.55 Table 4. Mechanical properties form the indentation experiments after cleaning samples
比较表 3、表 4可以发现,激光清洗后试样的表面屈服强度、抗拉强度、延伸率和硬化指数等指标,与原始试样相比,示值变化在测量误差范围之内,可认为激光除锈前后对金属基底表面力学性能影响不大。
-
考虑到集电环的工作性质,在室温条件下采用LINSES电阻率测试仪对激光清洗前后试样的电阻率进行测量,测试结果如图 9所示。对比图中结果可以发现,激光除锈后的试样的表面电阻率相比于原始试样提高了8.3%。
在激光除锈过程中,金属基底表面会有激光辐射后留下的光斑痕迹,使得金属基底的表面粗糙度增大,如图 4b所示。采用X射线衍射仪(X-ray diffractometer, XRD)对原始试样和激光除锈后试样表面进行表征,结果如图 10所示。发现经过激光除锈的试样表面会有少量的奥氏体转变。金属基底吸收激光能量后,使金属中自由电子的热运动能增加,并在很短时间内通过与晶格碰撞把电子的能量转化为晶格的热振动能,在锈蚀对金属基底的热膨胀力作用下,使金属基底表面部分晶体点阵发生晶格畸变,产生面心立方的残余奥氏体。金属电子理论认为,散射是金属产生电阻的根本原因。金属晶界中存在大量的空位、位错等缺陷,可成为电子传输的散射中心,引入散射并增加电阻。位错越多,散射中心越多,电阻就越大,其稳定性越低。所以经激光除锈后金属基底表面,由于表面粗糙度的增加以及部分晶体点阵发生的晶格畸变,增加了电子散射的几率,使电阻率提高了8.3%。该变化仍符合使用规范。