Advanced Search
LI Lihong, HUA Guoguang. Image segmentation of 2-D maximum entropy based on the improved genetic algorithm[J]. LASER TECHNOLOGY, 2019, 43(1): 119-124. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.024
Citation: LI Lihong, HUA Guoguang. Image segmentation of 2-D maximum entropy based on the improved genetic algorithm[J]. LASER TECHNOLOGY, 2019, 43(1): 119-124. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.024

Image segmentation of 2-D maximum entropy based on the improved genetic algorithm

More Information
  • Received Date: March 11, 2018
  • Revised Date: April 18, 2018
  • Published Date: January 24, 2019
  • In order to solve the defects of traditional maximum 2-D entropy segmentation algorithm, a large amount of calculation, more time consumption, and so on, a maximum 2-D entropy segmentation method based on the improved genetic algorithm was proposed. By improving the mutation operating mode of the genetic algorithm, the speed of the genetic algorithm to find maximum 2-D entropy segmentation threshold was improved, and then image segmentation by using the segmentation algorithm was accelerated.Through theoretical analysis and simulation experiments, the results show that, the running time of the modified model is compressed to 0.95s, which is far lower than the traditional maximum 2-D entropy segmentation method. The modified segmentation method improves the segmentation efficiency and ensures the accuracy of image segmentation.
  • [1]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1):62-66. DOI: 10.1109/TSMC.1979.4310076
    [2]
    SONG B, YANG H X, CENG J F, et al. 2-D minimum error threshold segmentation method based on mean absolute deviation from the median[J]. Laser Technology, 2015, 39(5): 717-722(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201505028.htm
    [3]
    ZHENG W, ZHANG J, LI K X, et al. Improved active contour segmentation model based on phase consistency[J]. Laser Technology, 2016, 40(2): 296-302(in Chinese). http://www.opticsjournal.net/ViewObject.htm?oid=OJ160329000179IfLhOk&otype=OJ
    [4]
    LAKSHMI S, SANKARANARAYANAN D V.A study of edge detection techniques for segmentation computing approaches[J]. International Journal of Computer Applications, 2011, Special Issue on CASCT(1):35-41. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1e11ba6e9e406b16370c746ea3cd230a
    [5]
    CANNY J. A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine intelligence, 1986, 8(6): 184-203. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3d39d0b11988c5f90bf44b10d764f020
    [6]
    DAVIS L S. A survey of edge detection techniques[J]. Computer Graphics and Image Processing, 1975, 4(3):248-270. DOI: 10.1016/0146-664X(75)90012-X
    [7]
    KESAVAN H, KAPUR J N. The generalized maximum entropy principle[J]. IEEE Transactions on Systems Man and Cybernetics, 1989, 19(5):1042-1052. DOI: 10.1109/21.44019
    [8]
    DOYLE W. Operations useful for similarity-invariant pattern recognition[J]. Journal of the ACM, 1962, 9(2):259-267. DOI: 10.1145/321119.321123
    [9]
    ABUTALEB A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer Vision Graphics and Image Processing, 1989, 47(1):22-32. DOI: 10.1016/0734-189X(89)90051-0
    [10]
    WANG Ch H, LI L, LI Y Sh et al. Seeking of tissue image digging point method based on genetic-arithmetic[J]. Optics and Precision Engineering, 2005, 13(2):231-236(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GXJM20050200I.htm
    [11]
    ANTONIOL G, CECCARELLI M. Microarray image gridding with stochastic search based approaches[J]. Image and Vision Computing, 2007, 25(2):155-163. DOI: 10.1016/j.imavis.2006.01.023
    [12]
    CHONG J S, ZHOU X K, WANG H Q, et al. Image thresholding segmentation based on genetic algorithm[J]. Journal of Electronics and Information Technology, 2000, 22(5):785-790(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6cea59a2bfcc32fa5163b45d7cb24327
    [13]
    MO L. Study on image segmentation based on RGB color image[J].Computer Science, 2016, 43(s1):168-170(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/stnyyj201805009
    [14]
    CHANG Q, WANG L, XING Ch, et al. The selection of image threshold on the basis of genetic algorithms[J]. Computer Engineering & Applications, 2002, 38(22):35-37(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSGG200222011.htm
    [15]
    HAN S Q, WANG L. A survey of thresholding methods for image segmentation[J]. Systems Engineering and Electronics, 2002, 24(6): 91-94(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c63a08a676ba163bdc9b542609ae9d75
    [16]
    LIN Q, DONG P, LIN J Y. A survey on graph cut techniques[J]. Microprocessors, 2015, 2015(1):35-39(in Chinese). DOI: 10.1007/978-81-322-2256-9_8
    [17]
    HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[J]. Quarterly Review of Biology, 1992, 6(2):126-137.
    [18]
    JIN J L, YANG X H, DING J. An improved simple genetic algorithm—accelerating genetic algorithm[J]. Systems Engineering-theory & Practice, 2001, 21(4):8-13(in Chinese).
    [19]
    PENCE C H. Is genetic drift a force?[J]. Synthese, 2017, 194(6):1967-1988. DOI: 10.1007/s11229-016-1031-2
    [20]
    SRINIVAS M, PATNAIK L M. Genetic algorithms: A survey[J]. IEEE Computer, 2002, 27(6):17-26. http://d.old.wanfangdata.com.cn/Periodical/jsjyyyrj200402032
    [21]
    LEE S W, LEE D J, PARK H S. A new methodology for gray-scale character segmentation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 1045-1050. DOI: 10.1109/34.541415
    [22]
    ROWE J E. Genetic algorithm theory[C]//Genetic and Evolutionary Computation Conference. Philadelphia, PA, USA: Association for Computing Machinery, 2011: 1029-1052.
    [23]
    WANG X P, CAO L M. Genetic algorithm: theory, application and software implementation [M]. Xi'an: Xi'an Jiaotong University Press, 2002:18-51(in Chinese).
    [24]
    ZHANG H J, ZHAO J, LUO H. A method combining genetic algorithm with simultaneous perturbation stochastic approximation for linearly constrained stochastic optimization problems[J].Journal of Combinatorial Optimization, 2016, 31(3):979-995. DOI: 10.1007/s10878-014-9803-4
    [25]
    AYO B S. An improved genetic algorithm for flight path re-routes with reduced passenger impact[J]. Journal of Computer & Communications, 2017, 5(7):65-75.
    [26]
    CHEN L P, CHEN X Y, WANG S, et al. Foreign fiber image segmentation based on maximum entropy and genetic algorithm[J]. Journal of Computer and Communications, 2017, 3(11):1-7.
    [27]
    WANG H W, LIANG Y Y, WANG Zh H. Otsu image threshold segmentation method based on new genetic algorithm [J]. Laser Technology, 2014, 38(3): 364-367(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201706010
    [28]
    POTTS J C, GIDDENS T D, YADAV S B. The development and evaluation of an improved genetic algorithm based on migration and artificial selection[J]. IEEE Transactions on Systems Man & Cybernetics, 1994, 24(1):73-86. http://ieeexplore.ieee.org/iel1/21/6561/00259687.pdf
    [29]
    YANG Q W, JIANG J P, ZHANG G H. Improvement of the speed of genetic algorithm optimization [J]. Software Journal, 2001, 12 (2): 270-275(in Chinese).
  • Cited by

    Periodical cited type(3)

    1. 崔子健,张庆才,谭晓茗,张靖周. 带同轴引气激光制孔中的气动特性分析. 南京航空航天大学学报. 2024(04): 658-667 .
    2. 王海龙,李铁,王宏建. AlN陶瓷的飞秒激光螺旋制孔研究. 机械工程与自动化. 2021(06): 120-121+123 .
    3. 王桂霞,崔智勇. 基于激光雷达的机器人精准制孔控制系统设计. 激光杂志. 2019(10): 103-106 .

    Other cited types(7)

Catalog

    Article views (6) PDF downloads (5) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return