Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 43 Issue 1
Dec.  2018
Article Contents
Turn off MathJax

Citation:

Triangular waveform generation with frequency doubling based on microwave photonics

  • Received Date: 2018-01-08
    Accepted Date: 2018-01-23
  • In order to overcome the problem of the electronic bottleneck in the traditional arbitrary waveform generation method, the technology type, characteristics and application background of the radio frequency arbitrary waveform based on microwave photonics were analyzed. A triangular waveform generation with frequency doubling based on parallel Mach-Zehnder modulator was adopted, and the theoretical analysis and simulation verification were carried out. The root mean square error was introduced to evaluate the output signal and the ideal waveform. The results show that, the triangle wave signal of 20GHz can be generated by 10GHz driving signal. The root mean square error is 0.038, which means the output signal is in good agreement with the ideal signal. Compared with other methods, the method can generate frequency doubling triangle wave, and the signal waveform agrees well with the theoretical waveform. It has guiding significance for the future generation of radio frequency arbitrary waves based on microwave photonics.
  • 加载中
  • [1]

    ZHANG Q Sh, YANG D K, WEI Y Ch, et al. Relations between common waveforms in electronics[J]. Acta Aeronautica ET Astronautica Sinica, 2001, B22(6):34-37(in Chinses).
    [2]

    LI Q, LIANG L, GUO R H, et al. Experimental study about microwave photonic frequency multiplication system based on polarization modulator[J]. Laser Technology, 2014, 38(5): 660-664(in Chinses).
    [3]

    ZOU G J, ZHANG B F, TENG Y Ch, et al. Study on generation and distribution of microwave signals based on optoelectronic oscillator for satellite applications[J]. Laser Technology, 2017, 41(4): 582-585(in Chinese).
    [4]

    PU T. Principle and application of microwave photonics[M]. Beijing: Publishing House of Electronics Industry, 2015: 79-83(in Ch-inese).
    [5]

    WANG H, LATKIN A I, BOSCOLO S, et al. Generation of triangular-shaped optical pulses in normally dispersive fibre[J]. Journal of Optics, 2010, 12(3):220-221.
    [6]

    XIAO S, McKINNEY J D, WEINER A M. Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper[J]. IEEE Photonics Techno-logy Letters, 2004, 16(8):1936-1938. doi: 10.1109/LPT.2004.831324
    [7]

    CHOU J, HAN Y, JALALI B. Adaptive RF-photonic arbitrary waveform generator[J]. IEEE International Topical Meeting on Microwave Photonics, 2003, 15(4):93-96.
    [8]

    WANG C, YAO J. Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2008, 20(11):882-884. doi: 10.1109/LPT.2008.922333
    [9]

    CHI H, YAO J. Chirped RF pulse generation based on optical spectral shaping and wavelength-to-time mapping using a nonlinearly chirped fiber Bragg grating[J]. Journal of Lightwave Technology, 2008, 26(10):1282-1287. doi: 10.1109/JLT.2008.917768
    [10]

    LI J, NING T, PEI L, et al. Photonic-assisted periodic triangular-shaped pulses generation with tunable repetition rate[J]. IEEE Photonics Technology Letters, 2013, 25(10):952-954. doi: 10.1109/LPT.2013.2253454
    [11]

    MA C, JIANG Y, BAI G, et al. Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach-Zehnder modulator[J]. Optics Communications, 2016, 363:207-210. doi: 10.1016/j.optcom.2015.10.054
    [12]

    XIANG P, GUO H, CHEN D, et al. A novel approach to photonic generation of periodic triangular radio frequency waveforms[J]. Optica Applicata, 2015, 45(3):381-391.
    [13]

    SHI Y L, ZHANG Y, SUN L J. Influence of lasers on phase noise of optoelectronic oscillators[J]. Laser Technology, 2015, 39(6):761-764(in Chinses).
    [14]

    MALEKI L. Sources: The optoelectronic oscillator[J]. Nature Photonics, 2011, 5(12): 728-730. doi: 10.1038/nphoton.2011.293
    [15]

    LI W, YAO J. An optically tunable optoelectronic oscillator[J]. Journal of Lightwave Technology, 2010, 28(18):2640-2645. doi: 10.1109/JLT.2010.2058792
    [16]

    YAO X S, MALEKI L. Optoelectronic oscillator for photonic systems[J]. IEEE Journal of Quantum Electronics, 1996, 32(7):1141-1149. doi: 10.1109/3.517013
    [17]

    GAO Y, WEN A, ZHENG H, et al. Photonic microwave waveform generation based on phase modulation and tunable dispersion[J]. Optics Express, 2016, 24(12):12524-12533. doi: 10.1364/OE.24.012524
    [18]

    ZHANG F, GAO B, ZHOU P, et al. Triangular pulse generation by polarization multiplexed optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2016, 28(15):1645-1648. doi: 10.1109/LPT.2016.2562031
    [19]

    LI W, KONG F, YAO J. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator[J]. Journal of Lightwave Technology, 2013, 31(23):3780-3786. doi: 10.1109/JLT.2013.2287122
    [20]

    HUANG L, CHEN D, WANG P, et al. Generation of triangular pulses based on an optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2015, 27(23):2500-2503. doi: 10.1109/LPT.2015.2472419
    [21]

    WU T, JIANG Y, MA C, et al. Simultaneous triangular waveform signal and microwave signal generation based on dual-loop optoelectronic oscillator[J]. IEEE Photonics Journal, 2017, 8(6):1-10.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article views(8989) PDF downloads(99) Cited by()

Proportional views

Triangular waveform generation with frequency doubling based on microwave photonics

  • 1. Shanghai Institute of Satellite Engineering, Shanghai 200240, China
  • 2. Beijing Research & Developonet Center, Shanghai Academy of Spaceflight Technology, Beijing 100081, China

Abstract: In order to overcome the problem of the electronic bottleneck in the traditional arbitrary waveform generation method, the technology type, characteristics and application background of the radio frequency arbitrary waveform based on microwave photonics were analyzed. A triangular waveform generation with frequency doubling based on parallel Mach-Zehnder modulator was adopted, and the theoretical analysis and simulation verification were carried out. The root mean square error was introduced to evaluate the output signal and the ideal waveform. The results show that, the triangle wave signal of 20GHz can be generated by 10GHz driving signal. The root mean square error is 0.038, which means the output signal is in good agreement with the ideal signal. Compared with other methods, the method can generate frequency doubling triangle wave, and the signal waveform agrees well with the theoretical waveform. It has guiding significance for the future generation of radio frequency arbitrary waves based on microwave photonics.

引言
  • 当前,以三角波、锯齿波、方波[1]等为代表的特殊波形信号被应用在激光雷达、信号扫描、卫星通信等多个领域,成为现代生产生活中不可或缺的重要环节。传统的射频任意波形产生办法是基于电子学,有着电子瓶颈、抗电磁干扰弱等问题难以克服。而基于微波光子学的射频任意波形生成方法因其在器件尺寸、频率可调谐范围和抗电磁干扰等方面有着得天独厚的优势[2-3],吸引着研究学者们的目光[4]。近年来,基于微波光子学的产生办法大体可以分为4类:基于空间-时间映射[5-6]、基于频率-时间映射[7-9]、基于外调制方法[10-12]、基于光电振荡器(opto-electronic oscillator, OEO)[13-16]

    第1类中[5],连续光脉冲(continuous wave, CW)经预啁啾后,通过定长的非线性色散光纤时发生群速度色散,从而将各频率分量有效隔离并分别衰减以满足任意波形生成要求,但该方案在稳定性上有所欠缺,在实际应用中效果有所折扣;第2类中[17],利用Sagnac环双向导通特性,将激光波束一分为二,其中一路受相位调制器(phase modulator, PM)调制,一路不加以调制,两路信号经耦合进入可调色散补偿器件,满足两波束之间不同频率分量的幅度要求,但该种方法对实验环境要求较为苛刻,对集成器件的性能有较高要求;第3类中[10],通过调制光边带以保证生成的光电流中不同谐波分量满足傅里叶分析中各分量要求。采用双驱动马赫-曾德尔调制器(dual electrical Mach-Zehnder modulator, DE-MZM)和定长的色散光纤,可抑制四次谐波却只保留一次和三次谐波,同时调整偏置电压、调制深度和光纤长度满足谐波分量之间幅度要求。但引入色散光纤极大地增加了系统复杂度,降低了系统的灵活性。此外,光电振荡器采取光电反馈环路技术,摆脱了微波信号频率上升造成相位噪声下降的问题,也被引入射频任意波生成方法中以提高信号质量[18-21],采用不同的振荡链路和可调带通滤波器(tunable bandpass filter, TBPF)以生成特定频率分量并保证频率的纯净度,进而生成特定波形。但为满足幅度要求,每条链路增益都需设计得较大,且不同频率分量之间的幅度比率难以控制。

    作者采用基于并联马赫-曾德尔调制器(MZM)的外调制方法,并根据目标波形进行了理论推导、系统仿真工作。与其它方法对比不难发现,该方案操作简单、可调性较好,有利于未来方案的扩展。

1.   基本原理
  • 基于微波光子学的射频三角波生成方案如图 1所示。主要采用外调制方法,器件包括激光二极管(laser diode, LD)、偏振控制器(polarization controller, PC)、马赫-曾德尔调制器(MZM)、射频(radio frequency, RF)源、平衡光电二极管(balanced photodetector, BPD)、光耦合器(optical coupler, OC)和90°电桥。

    Figure 1.  Scheme of triangular waveform generation based on two parallel MZM

    激光器发出幅度为E0、中心频率为ω0的激光波束,经光耦合器,光束被等功率地分成两路。两路光信号分别经偏振控制器(PC)进入并联的马赫-曾德尔调制器(MZM1和MZM2)中,并被调制。加载在MZM1和MZM2上的微波信号是同一微波源经90°电桥分别生成,即两路微波信号相差90°,为方便推导,将加载在MZM1上的微波源信号定义为初相位为0°的余弦信号,激光波束经电光调制器后输出信号分别为:

    式中, VRF为微波源的幅度, ωs是微波源角频率,VDC1VDC2是分别加载在两个MZM偏置电压, Vπ是调制器的半波电压, ω0表示激光器发生激光的中心频率,t表示时间。

    需将MZM1和MZM2设置在最大偏置点或最小偏置点,需设置直流源的电压幅度,让直流源1(DC1)、直流源2(DC2)的电压分别为mVπ/2和nVπ/2,其中m, n为正偶数。

    MZM1和MZM2的输出光谱理论上相同,如图 2所示。可以看出,光谱图中每两个相邻频率线之间相位相差π/2,相对于激光信号频率对称的两条频率线之间相位总是相差π的整数倍。

    Figure 2.  Spectrum of signal at A and B points

    经微波源调制后,MZM1的输出端可表示为:

    MZM2的输出端可表示为:

    两路光信号经光纤信道,进入平衡光电二极管中,经拍频处理后,输出的光电流可表示为:

    式中,αVRF/Vπ定义为调制系数。

    通过贝塞尔展开式,对光电流信号进行Jacobi展开:

    式中,J为Jacobi展开固定形式。理想三角波进行傅里叶级数展开:

    考虑到高阶谐波衰减迅速,在实际生产生活中可以忽略,因此着重考虑低次谐波。可将理想三角波的信号分解进行简化:

    式中, Ω是基频的角频率, D为直流信号幅度。从(5)式和(7)式对比可得,只需满足下式即可生成三角波:

    通过调制系数α进行调节,使I2(α): I6(α)=9: 1。对调制系数进行计算,得到当α=3.895,可满足9: 1的比例,即可生成三角波, 如图 3所示。

    Figure 3.  The calculated value of J2, J6 vs. the modulation index α

2.   仿真分析
  • 在以上工作的基础上,根据图 1所示的系统框架,对方案进行仿真模拟,方案中将微波源定为10GHz,初始相位为0°,电压幅度为4.59V。

    图 4为经平衡光电二极管后输出信号的频谱。信号频谱中六次谐波相较于二次谐波的功率相差19.06dB,与理论值19.08dB相近,其它谐波相较于六次谐波的功率至少被抑制了50.17dB,因此在数据分析中, 可将处于二次和六次谐波之外的杂波直接忽略。此时,信号频谱中二次谐波与六次谐波的幅度比值满足9: 1的关系,符合上面提出的比例要求。

    Figure 4.  Frequency spectrum of simulated output signal

    输出信号的波形如图 5所示。图中包含输出信号波形和理想波形,前者用实线表示,后者用虚线表示。经计算,输出信号波形与理想三角波的均方根误差(root mean square error, RMSE)为0.038,可以判定:仿真波形与理想波形契合度较高。

    Figure 5.  Waveform of simulated output signal

    本文中对实验方案中经常出现的电压漂移问题进行了后续探讨。图 6a表示不同程度的电压漂移对信号波形的影响,图 6b为不同程度的电压漂移对输出信号的均方根误差的干扰。经拟合,漂移电压与均方根误差之间成二次多项式关系,且二次项系数为正。曲线最小值点的横坐标为-0.04,并非是无电压漂移时对应的调制器状态。但对于不可控因素,系统仍应选择采用电压控制模块,以防系统发生电压漂移状况。

    Figure 6.  a—comparison of output signals and ideal waveforms under different drift voltages b—RMSE of output signal versus different values of drift voltage

3.   结论
  • 提出了一种基于微波光子学的射频三角波生成方案,对相关原理进行了详细阐述。建立了数学仿真模型,实现了用10GHz的微波源生成20GHz的三角波信号,并引入均方根误差作为衡量指标,计算得到均方根误差为0.038。此外,对电压漂移现象进行探讨,建立模型并拟合得到电压漂移与均方根误差之间成上开口抛物线关系。这些研究对未来基于微波光子学的射频任意波生成具有指导意义。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return