[1]
|
CHEN D, SHEN L. Highly birefringent elliptical-hole photonic crystal fibers with double defect[J]. Journal of Lightwave Technology, 2007, 25(9): 2700-2705. doi: 10.1109/JLT.2007.902114 |
[2]
|
CHEN D R, WU G Zh. Highly birefringent photonic crystal fiber based on a double-hole unit[J]. Applied Optics, 2010, 49(9): 1682-1686. doi: 10.1364/AO.49.001682 |
[3]
|
LIU X A, WU G Zh, CHEN D R, et al. Novel highly bireferingent photonic crystal fiber based on an elliptical hole fiber cladding and a fiber core of double-micro-hole units[J]. Acta Photonica Sinica, 2011, 40(11): 1728-1732(in Chinese). doi: 10.3788/gzxb |
[4]
|
MUSIDEKE M, YAO J Q, LU Y, et al. High birefringence and high nonlinear octagonal photonic crystal fiber with low confinement loss[J]. Infrared and Laser Engineering, 2013, 42(12): 3373-3379. |
[5]
|
XU K, LU Sh Y, YANG Y. Research of CO2 gas sensors based on photonic crystal fiber[J]. Laser Technology, 2017, 41(5): 693-696 (in Chinese). |
[6]
|
ZHANG X D, CHEN N, NIE F K, et al.Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes[J]. Laser Technology, 2018, 42(1): 48-52 (in Chinese). |
[7]
|
ZHANG W, LI Sh G, AN G W, et al.Double-cladding rectangular-lattice birefringence photonic crystal fiber with elliptical air holes[J]. Optical & Quantum Electronics, 2015, 47(8): 2649-2657. |
[8]
|
YANG J F, CHEN M. Design of photonic crystal fiber based on hexagon-lattice circle air hole with high birefringence[J]. Journal of Guilin University of Electronic Technology, 2016, 36(4): 279-283 (in Chinese). |
[9]
|
ZHOU M H, HUANG Y L. Highly bireferingent photonic crystal fiber based on lattice structure of elliptic layer[J]. Acta Photonica Sinica, 2016, 45(3): 0106002(in Chinese). |
[10]
|
GU Q Zh, LI Q H. Novel photonic crystal fiber with high bireferingence and low loss[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060603(in Chinese). |
[11]
|
WANG J Y, CAO Y, LU Y J, et al. A novel high bireferingent photonic crystal fiber based on Schott glass[J]. Acta Photonica Sinica, 2014, 43(7): 0706020(in Chinese). doi: 10.3788/gzxb |
[12]
|
CAI H J, SHEN Sh J, LIU X Sh.Photonic crystal fiber with Yb3+-doped aluminosilicate glass core[J]. Laser Technology, 2017, 41(5): 759-763(in Chinese). |
[13]
|
ZHEN H L.Polarization filters based on high birefringence photonic crystal fiber filled with Au[J]. Laser Technology, 2016, 40(1): 1-4(in Chinese). |
[14]
|
WU X X, FAN W D, LIAO W Y, et al. High bireferingence in graphene structure photonic crystal fiber[J]. Acta Photonica Sinica, 2016, 45(1):0106002(in Chinese). doi: 10.3788/gzxb |
[15]
|
LIU Y C, LAI Y. Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis[J]. Optics Exppress, 2005, 13(1): 225-235. doi: 10.1364/OPEX.13.000225 |
[16]
|
WANG L, YANG D X. Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core[J]. Optics Express, 2007, 15(14): 8892-8897 doi: 10.1364/OE.15.008892 |
[17]
|
LIAO J F, SUN J Q.High birefringent rectangular-lattice photonic crystal fibers with low confinement loss employing different sizes of elliptical air holes in the cladding[J]. Optical Fiber Technology, 2012, 18(6): 457-461. doi: 10.1016/j.yofte.2012.07.006 |
[18]
|
SHENG Y, LU J, YAO G F, et al. Analysis of highly bireferingent and confinement loss of elliptical air-holes rectangular photonic crystal fiber[J]. Acta Photonica Sinica, 2014, 43(s1): 0106008(in Chinese). |
[19]
|
ZHANG X D, NIE F K, LU X L, et al. The characteristic analysis of microstructure photonic crystal fibers based on regular quadrilateral lattice[J]. Optical Instruments, 2017, 39(4): 18-24 (in Chinese). |
[20]
|
ORTIGOSA-BLANCH A, KNIGHT J C, WADSWORTH W J. Highly birefringent photonic crystal fibers[J]. Optics Letters, 2000, 25(18): 1325-1327. doi: 10.1364/OL.25.001325 |
[21]
|
NAMIHIRA Y, LIU J J, KOGA T, et al. Design of highly nonlinear octagonal photonic crystal fiber with near-zero flattened dispersion at 1.31μm waveband[J]. Optical Review, 2011, 18(6): 436-440. doi: 10.1007/s10043-011-0082-3 |