Advanced Search
HE Liwen, LUO Le, MENG Gang, SHAO Jingzhen, FANG Xiaodong. Recent progress of novel photolithography technologies[J]. LASER TECHNOLOGY, 2019, 43(1): 30-37. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.007
Citation: HE Liwen, LUO Le, MENG Gang, SHAO Jingzhen, FANG Xiaodong. Recent progress of novel photolithography technologies[J]. LASER TECHNOLOGY, 2019, 43(1): 30-37. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.007

Recent progress of novel photolithography technologies

More Information
  • Received Date: January 17, 2018
  • Revised Date: March 05, 2018
  • Published Date: January 24, 2019
  • Integrated circuit(IC) lithography, as a typical representative of traditional lithography technology, supports the rapid development of integrated circuit chips. The new generation of photolithography technology has the advantages of diverse technology, high precision and high efficiency. It has great potential in the development of optoelectronic devices, the realization of 3-D micro-nano structure, and the construction of the ordered nanoscale channels. A variety of new photolithography technologies in recent years have been reviewed. Their characteristics and their applications in nanoelectronics, photonic devices, energy, sensing and other fields have been analyzed. Finally, the development direction of lithography technology in the future is prospected.
  • [1]
    MOORE G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1): 82-85. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214531942/
    [2]
    KIM S, MARELLI B, BRENCKLE M A, et al. All-water-based electron-beam lithography using silk as a resist[J]. Nature Nanotechnology, 2014, 9(4): 306-310. DOI: 10.1038/nnano.2014.47
    [3]
    HÖEFLICH K, JURCZYK J, ZHANG Y, et al. Direct electron beam writing of silver-based nanostructures[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24071-24077. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=40f2cc953d468748c508cc95c2b96ff6
    [4]
    QIU C, ZHANG Z, XIAO M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355(6322): 271-276. DOI: 10.1126/science.aaj1628
    [5]
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. DOI: 10.1126/science.aaf6644
    [6]
    FISCHER J, VON FREYMANN G, WEGENER M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 2010, 22(32): 3578-3582. DOI: 10.1002/adma.201000892
    [7]
    YU J, HE Sh T, SONG H Y, et al. Metal nanostructured film gene-rated by femtosecond laser induced forward transfer[J]. Chinese Journal of Lasers, 2017, 44(1): 102009(in Chinese). DOI: 10.3788/CJL
    [8]
    BVCKMANN T, STENGER N, KADIC M, et al. Tailored 3-D mechanical metamaterials made by dip-in direct laser writing optical lithography[J]. Advanced Materials, 2012, 24(20): 2710-2714. DOI: 10.1002/adma.v24.20
    [9]
    LONG J, XIONG W, LIU Y, et al. 3-D assembly of aligned carbon nanotubes via femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2017, 44(1): 102003(in Chinese). DOI: 10.3788/CJL
    [10]
    BRAUN A, MAIER S A. Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors[J]. ACS Sensors, 2016, 1(9): 1155-1162. DOI: 10.1021/acssensors.6b00469
    [11]
    BAGHERI S, WEBER K, GISSIBL T, et al. Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement[J]. ACS Photonics, 2015, 2(6): 779-786. DOI: 10.1021/acsphotonics.5b00141
    [12]
    BROWN L V, YANG X, ZHAO K, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)[J]. Nano Letters, 2015, 15(2): 1272-1280. DOI: 10.1021/nl504455s
    [13]
    CHENG F, YANG X, GAO J. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials[J]. Scientific Reports, 2015, 5:14327. DOI: 10.1038/srep14327
    [14]
    BAGHERI S, GIESSEN H, NEUBRECH F. Large-area antenna-assisted seira substrates by laser interference lithography[J]. Advanced Optical Materials, 2014, 2(11): 1050-1056. DOI: 10.1002/adom.201400218
    [15]
    CHANG Y C, LU S C, CHUNG H C, et al. High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography[J]. Scientific Reports, 2013, 3(3):3339. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3842549
    [16]
    ZHAO Z, CAO Y, CAI Y, et al. Oblique colloidal lithography for the fabrication of nonconcentric features[J]. ACS Nano, 2017, 11(7): 6594-6604. DOI: 10.1021/acsnano.6b07867
    [17]
    DU K, DING J, LIU Y, et al. Stencil lithography for scalable micro-and nanomanufacturing[J]. Micromachines, 2017, 8(4): 131. DOI: 10.3390/mi8040131
    [18]
    GUILHABERT B, MASSOUBRE D, RICHARDSON E, et al. Sub-micron lithography using InGaN micro-LEDs: mask-free fabrication of LED arrays[J]. IEEE Photonics Technology Letters, 2012, 24(24): 2221-2224. DOI: 10.1109/LPT.2012.2225612
    [19]
    MIKULICS M, HARDTDEGEN H. Nano-LED array fabrication suitable for future single photon lithography[J]. Nanotechnology, 2015, 26(18): 185302. DOI: 10.1088/0957-4484/26/18/185302
    [20]
    CHALLA P K, KARTANAS T, CHARMET J, et al. Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning[J]. Biomicrofluidics, 2017, 11(1): 014113. DOI: 10.1063/1.4976690
    [21]
    LIN H Y, SHER C W, HSIEH D H, et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold[J]. Photonics Research, 2017, 5(5): 411-416. DOI: 10.1364/PRJ.5.000411
    [22]
    MASUDA H, FUKUDA K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science, 1995, 268(5216): 1466. DOI: 10.1126/science.268.5216.1466
    [23]
    LEE W, PARK S J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures[J]. Chemical reviews, 2014, 114(15): 7487-7556. DOI: 10.1021/cr500002z
    [24]
    MAcFARLANE R J, LEE B, HILL H D, et al. Assembly and organization processes in DNA-directed colloidal crystallization[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10493-10498. DOI: 10.1073/pnas.0900630106
    [25]
    YAN P, FEI G T, SU Y, et al. Anti-counterfeiting of one-dimensional alumina photonic crystal by creating defects[J]. Electrochemical and Solid-State Letters, 2011, 15(3): K23-K26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=571c1bfb7608a8253dda853a35407835
    [26]
    YAO J, LIU Z, LIU Y, et al. Optical negative refraction in bulk metamaterials of nanowires[J]. Science, 2008, 321(5891): 930. DOI: 10.1126/science.1157566
    [27]
    ZHOU L, TAN Y, WANG J, et al. 3-D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398. DOI: 10.1038/nphoton.2016.75
    [28]
    CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub-25nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116. DOI: 10.1063/1.114851
    [29]
    KOOY N, MOHAMED K, PIN L T, et al. A review of roll-to-roll nanoimprint lithography[J]. Nanoscale Research Letters, 2014, 9(1): 320. DOI: 10.1186/1556-276X-9-320
    [30]
    MA P, XU Z, WANG M, et al. Fast fabrication of TiO2 hard stamps for nanoimprint lithography[J]. Materials Research Bulletin, 2017, 90: 253-259. DOI: 10.1016/j.materresbull.2017.03.010
    [31]
    JAIN A, SPANN A, COCHRANE A, et al. Fluid flow in UV nanoimprint lithography with patterned templates[J]. Microelectronic Engineering, 2017, 173: 62-70. DOI: 10.1016/j.mee.2017.04.001
    [32]
    ZHANG L, ZHANG J, YUAN D, et al. Electrochemical nanoimprint lithography directly on n-type crystalline silicon (111) wafer[J]. Electrochemistry Communications, 2017, 75: 1-4. DOI: 10.1016/j.elecom.2016.12.004
    [33]
    MATSUI S, HIROSHIMA H, HIRAI Y, et al. Innovative UV nanoimprint lithography using a condensable alternative chlorofluorocarbon atmosphere[J]. Microelectronic Engineering, 2015, 133(C): 134-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1f795dd0cf1144d8b46311a3c75d713
    [34]
    JI R, HORNUNG M, VERSCHUUREN M A, et al. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing[J]. Microelectronic Engineering, 2010, 87(5): 963-967. DOI: 10.1016-j.mee.2009.11.134/
    [35]
    TALIP N B A, HAYASHI T, TANIGUCHI J, et al. Lifetime amelioration of antireflection structure molds by means of partial-filling ultraviolet nanoimprint lithography[J]. Microelectronic Engineering, 2015, 141: 81-86. DOI: 10.1016/j.mee.2015.01.035
    [36]
    MOONEN P F, VRATZOV B, SMAAL W T T, et al. Flexible thin-film transistors using multistep UV nanoimprint lithography[J]. Organic Electronics, 2012, 13(12): 3004-3013. DOI: 10.1016/j.orgel.2012.09.001
    [37]
    LIU Ch, JIN L D, YE A P. Progress in and prospect of microsphere optical nanoscopy[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70003(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGDJ201607003.htm
    [38]
    YANG H, TROUILLON R, HUSZKA G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862-4870. DOI: 10.1021/acs.nanolett.6b01255
    [39]
    UPPUTURI P K, KRISNAN M S, MOOTHANCHERY M, et al. Photonic nanojet engineering to achieve super-resolution in photoacoustic microscopy: a simulation study[J]. Proceedings of the SPIE, 2017, 10064: 100644S DOI: 10.1117/12.2250483
    [40]
    PISCO M, GALEOTTI F, QUERO G, et al. Nanosphere lithography for optical fiber tip nanoprobes[J]. Light: Science & Applications, 2017, 6(5): e16229. http://www.nature.com/lsa/journal/v6/n5/abs/lsa2016229a.html
    [41]
    JI D, LI T, FUCHS H. Nanosphere lithography for sub-10nm nanogap electrodes[J]. Advanced Electronic Materials, 2017, 3(1): 1600348. DOI: 10.1002/aelm.201600348
    [42]
    CHEN Y F, XU CH, LU B R. A Super resolution nanolithography method using photon nano jetting to cause focusing effect: China, 201410722282.6[P].2015-04-01.
    [43]
    JASCHKE M, BUTT H J. Deposition of organic material by the tip of a scanning force microscope[J]. Langmuir, 1995, 11(4): 1061-1064. DOI: 10.1021/la00004a004
    [44]
    GARCIA R, KNOLL A W, RIEDO E. Advanced scanning probe lithography[J]. Nature Nanotechnology, 2014, 9(8): 577-587. DOI: 10.1038/nnano.2014.157
  • Related Articles

    [1]LI Mulin, ZHANG Qiaofen, SHI Shengda. Design of self-similar pulse compression fiber based on chirp compensation technology[J]. LASER TECHNOLOGY, 2021, 45(5): 566-570. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.005
    [2]YI Miao, WEN Ruhong, HUANG Ersong, XIAO Pingping. Characterization of linear chirped ultrashort pulse based on fractional-order Fourier transform[J]. LASER TECHNOLOGY, 2016, 40(3): 405-408. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.022
    [3]CHEN Bi-fang, LIU Tian-fu. Estimation chirp in ultrashort laser pulses using interferometric autocorrelation envelope width[J]. LASER TECHNOLOGY, 2010, 34(6): 851-854. DOI: 10.3969/j.issn.1001-3806.2010.06.035
    [4]LIN Yu-ke, LI Jian-ping. Theory and simulation of chirped pulse amplification[J]. LASER TECHNOLOGY, 2010, 34(6): 770-773. DOI: 10.3969/j.issn.1001-3806.2010.06.014
    [5]PENG Run-wu, TANG Li-jun. Propagation presentation of ultrashort chirped pulses with elegant Laguerre-Gaussian transverse modes[J]. LASER TECHNOLOGY, 2010, 34(2): 189-192. DOI: 10.3969/j.issn.1001-3806.2010.02.013
    [6]SU Juan, FENG Guo-ying, MA Zai-ru, LIU Weng-bing. Effect of misalignment of grating pair grooves on temporal profiles of chirped-pulse[J]. LASER TECHNOLOGY, 2009, 33(3): 319-322.
    [7]DONG Jun, PENG Han-sheng, WEI Xiao-feng, HU Dong-xia, ZHOU Wei, ZHAO Jun-pu, CHENG Wen-yong, LIU Lan-qin. Numerical simulation for the characteristics of spectral interferometry between two linear chirped pulses[J]. LASER TECHNOLOGY, 2009, 33(3): 232-235.
    [8]CHEN Bi-fang, LIU Tian-fu. Chirp characteristics of modified spectrum autointerferometric correlation for femtosecond pulse[J]. LASER TECHNOLOGY, 2007, 31(6): 587-589,592.
    [9]Wang Runxuan. Effect of loss and chirp on picosecond pulse soliton-effect compression[J]. LASER TECHNOLOGY, 2003, 27(5): 415-418.
    [10]Li Dayi, Han Song, Tang Yongling, Chen Jianguo. Propagation of chirped pulses inside self-action temporal guide[J]. LASER TECHNOLOGY, 1999, 23(2): 109-113.

Catalog

    Article views (16) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return