[1]
|
MOORE G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1): 82-85. |
[2]
|
KIM S, MARELLI B, BRENCKLE M A, et al. All-water-based electron-beam lithography using silk as a resist[J]. Nature Nanotechnology, 2014, 9(4): 306-310. doi: 10.1038/nnano.2014.47 |
[3]
|
HÖEFLICH K, JURCZYK J, ZHANG Y, et al. Direct electron beam writing of silver-based nanostructures[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24071-24077. |
[4]
|
QIU C, ZHANG Z, XIAO M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355(6322): 271-276. doi: 10.1126/science.aaj1628 |
[5]
|
KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644 |
[6]
|
FISCHER J, VON FREYMANN G, WEGENER M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 2010, 22(32): 3578-3582. doi: 10.1002/adma.201000892 |
[7]
|
YU J, HE Sh T, SONG H Y, et al. Metal nanostructured film gene-rated by femtosecond laser induced forward transfer[J]. Chinese Journal of Lasers, 2017, 44(1): 102009(in Chinese). doi: 10.3788/CJL |
[8]
|
BVCKMANN T, STENGER N, KADIC M, et al. Tailored 3-D mechanical metamaterials made by dip-in direct laser writing optical lithography[J]. Advanced Materials, 2012, 24(20): 2710-2714. doi: 10.1002/adma.v24.20 |
[9]
|
LONG J, XIONG W, LIU Y, et al. 3-D assembly of aligned carbon nanotubes via femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2017, 44(1): 102003(in Chinese). doi: 10.3788/CJL |
[10]
|
BRAUN A, MAIER S A. Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors[J]. ACS Sensors, 2016, 1(9): 1155-1162. doi: 10.1021/acssensors.6b00469 |
[11]
|
BAGHERI S, WEBER K, GISSIBL T, et al. Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement[J]. ACS Photonics, 2015, 2(6): 779-786. doi: 10.1021/acsphotonics.5b00141 |
[12]
|
BROWN L V, YANG X, ZHAO K, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)[J]. Nano Letters, 2015, 15(2): 1272-1280. doi: 10.1021/nl504455s |
[13]
|
CHENG F, YANG X, GAO J. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials[J]. Scientific Reports, 2015, 5:14327. doi: 10.1038/srep14327 |
[14]
|
BAGHERI S, GIESSEN H, NEUBRECH F. Large-area antenna-assisted seira substrates by laser interference lithography[J]. Advanced Optical Materials, 2014, 2(11): 1050-1056. doi: 10.1002/adom.201400218 |
[15]
|
CHANG Y C, LU S C, CHUNG H C, et al. High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography[J]. Scientific Reports, 2013, 3(3):3339. |
[16]
|
ZHAO Z, CAO Y, CAI Y, et al. Oblique colloidal lithography for the fabrication of nonconcentric features[J]. ACS Nano, 2017, 11(7): 6594-6604. doi: 10.1021/acsnano.6b07867 |
[17]
|
DU K, DING J, LIU Y, et al. Stencil lithography for scalable micro-and nanomanufacturing[J]. Micromachines, 2017, 8(4): 131. doi: 10.3390/mi8040131 |
[18]
|
GUILHABERT B, MASSOUBRE D, RICHARDSON E, et al. Sub-micron lithography using InGaN micro-LEDs: mask-free fabrication of LED arrays[J]. IEEE Photonics Technology Letters, 2012, 24(24): 2221-2224. doi: 10.1109/LPT.2012.2225612 |
[19]
|
MIKULICS M, HARDTDEGEN H. Nano-LED array fabrication suitable for future single photon lithography[J]. Nanotechnology, 2015, 26(18): 185302. doi: 10.1088/0957-4484/26/18/185302 |
[20]
|
CHALLA P K, KARTANAS T, CHARMET J, et al. Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning[J]. Biomicrofluidics, 2017, 11(1): 014113. doi: 10.1063/1.4976690 |
[21]
|
LIN H Y, SHER C W, HSIEH D H, et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold[J]. Photonics Research, 2017, 5(5): 411-416. doi: 10.1364/PRJ.5.000411 |
[22]
|
MASUDA H, FUKUDA K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science, 1995, 268(5216): 1466. doi: 10.1126/science.268.5216.1466 |
[23]
|
LEE W, PARK S J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures[J]. Chemical reviews, 2014, 114(15): 7487-7556. doi: 10.1021/cr500002z |
[24]
|
MAcFARLANE R J, LEE B, HILL H D, et al. Assembly and organization processes in DNA-directed colloidal crystallization[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10493-10498. doi: 10.1073/pnas.0900630106 |
[25]
|
YAN P, FEI G T, SU Y, et al. Anti-counterfeiting of one-dimensional alumina photonic crystal by creating defects[J]. Electrochemical and Solid-State Letters, 2011, 15(3): K23-K26. |
[26]
|
YAO J, LIU Z, LIU Y, et al. Optical negative refraction in bulk metamaterials of nanowires[J]. Science, 2008, 321(5891): 930. doi: 10.1126/science.1157566 |
[27]
|
ZHOU L, TAN Y, WANG J, et al. 3-D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398. doi: 10.1038/nphoton.2016.75 |
[28]
|
CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub-25nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116. doi: 10.1063/1.114851 |
[29]
|
KOOY N, MOHAMED K, PIN L T, et al. A review of roll-to-roll nanoimprint lithography[J]. Nanoscale Research Letters, 2014, 9(1): 320. doi: 10.1186/1556-276X-9-320 |
[30]
|
MA P, XU Z, WANG M, et al. Fast fabrication of TiO2 hard stamps for nanoimprint lithography[J]. Materials Research Bulletin, 2017, 90: 253-259. doi: 10.1016/j.materresbull.2017.03.010 |
[31]
|
JAIN A, SPANN A, COCHRANE A, et al. Fluid flow in UV nanoimprint lithography with patterned templates[J]. Microelectronic Engineering, 2017, 173: 62-70. doi: 10.1016/j.mee.2017.04.001 |
[32]
|
ZHANG L, ZHANG J, YUAN D, et al. Electrochemical nanoimprint lithography directly on n-type crystalline silicon (111) wafer[J]. Electrochemistry Communications, 2017, 75: 1-4. doi: 10.1016/j.elecom.2016.12.004 |
[33]
|
MATSUI S, HIROSHIMA H, HIRAI Y, et al. Innovative UV nanoimprint lithography using a condensable alternative chlorofluorocarbon atmosphere[J]. Microelectronic Engineering, 2015, 133(C): 134-155. |
[34]
|
JI R, HORNUNG M, VERSCHUUREN M A, et al. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing[J]. Microelectronic Engineering, 2010, 87(5): 963-967. |
[35]
|
TALIP N B A, HAYASHI T, TANIGUCHI J, et al. Lifetime amelioration of antireflection structure molds by means of partial-filling ultraviolet nanoimprint lithography[J]. Microelectronic Engineering, 2015, 141: 81-86. doi: 10.1016/j.mee.2015.01.035 |
[36]
|
MOONEN P F, VRATZOV B, SMAAL W T T, et al. Flexible thin-film transistors using multistep UV nanoimprint lithography[J]. Organic Electronics, 2012, 13(12): 3004-3013. doi: 10.1016/j.orgel.2012.09.001 |
[37]
|
LIU Ch, JIN L D, YE A P. Progress in and prospect of microsphere optical nanoscopy[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70003(in Chinese). |
[38]
|
YANG H, TROUILLON R, HUSZKA G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862-4870. doi: 10.1021/acs.nanolett.6b01255 |
[39]
|
UPPUTURI P K, KRISNAN M S, MOOTHANCHERY M, et al. Photonic nanojet engineering to achieve super-resolution in photoacoustic microscopy: a simulation study[J]. Proceedings of the SPIE, 2017, 10064: 100644S doi: 10.1117/12.2250483 |
[40]
|
PISCO M, GALEOTTI F, QUERO G, et al. Nanosphere lithography for optical fiber tip nanoprobes[J]. Light: Science & Applications, 2017, 6(5): e16229. |
[41]
|
JI D, LI T, FUCHS H. Nanosphere lithography for sub-10nm nanogap electrodes[J]. Advanced Electronic Materials, 2017, 3(1): 1600348. doi: 10.1002/aelm.201600348 |
[42]
|
CHEN Y F, XU CH, LU B R. A Super resolution nanolithography method using photon nano jetting to cause focusing effect: China, 201410722282.6[P].2015-04-01. |
[43]
|
JASCHKE M, BUTT H J. Deposition of organic material by the tip of a scanning force microscope[J]. Langmuir, 1995, 11(4): 1061-1064. doi: 10.1021/la00004a004 |
[44]
|
GARCIA R, KNOLL A W, RIEDO E. Advanced scanning probe lithography[J]. Nature Nanotechnology, 2014, 9(8): 577-587. doi: 10.1038/nnano.2014.157 |