Advanced Search
HE Liwen, LUO Le, MENG Gang, SHAO Jingzhen, FANG Xiaodong. Recent progress of novel photolithography technologies[J]. LASER TECHNOLOGY, 2019, 43(1): 30-37. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.007
Citation: HE Liwen, LUO Le, MENG Gang, SHAO Jingzhen, FANG Xiaodong. Recent progress of novel photolithography technologies[J]. LASER TECHNOLOGY, 2019, 43(1): 30-37. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.007

Recent progress of novel photolithography technologies

More Information
  • Received Date: January 17, 2018
  • Revised Date: March 05, 2018
  • Published Date: January 24, 2019
  • Integrated circuit(IC) lithography, as a typical representative of traditional lithography technology, supports the rapid development of integrated circuit chips. The new generation of photolithography technology has the advantages of diverse technology, high precision and high efficiency. It has great potential in the development of optoelectronic devices, the realization of 3-D micro-nano structure, and the construction of the ordered nanoscale channels. A variety of new photolithography technologies in recent years have been reviewed. Their characteristics and their applications in nanoelectronics, photonic devices, energy, sensing and other fields have been analyzed. Finally, the development direction of lithography technology in the future is prospected.
  • [1]
    MOORE G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1): 82-85. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214531942/
    [2]
    KIM S, MARELLI B, BRENCKLE M A, et al. All-water-based electron-beam lithography using silk as a resist[J]. Nature Nanotechnology, 2014, 9(4): 306-310. DOI: 10.1038/nnano.2014.47
    [3]
    HÖEFLICH K, JURCZYK J, ZHANG Y, et al. Direct electron beam writing of silver-based nanostructures[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24071-24077. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=40f2cc953d468748c508cc95c2b96ff6
    [4]
    QIU C, ZHANG Z, XIAO M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355(6322): 271-276. DOI: 10.1126/science.aaj1628
    [5]
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. DOI: 10.1126/science.aaf6644
    [6]
    FISCHER J, VON FREYMANN G, WEGENER M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 2010, 22(32): 3578-3582. DOI: 10.1002/adma.201000892
    [7]
    YU J, HE Sh T, SONG H Y, et al. Metal nanostructured film gene-rated by femtosecond laser induced forward transfer[J]. Chinese Journal of Lasers, 2017, 44(1): 102009(in Chinese). DOI: 10.3788/CJL
    [8]
    BVCKMANN T, STENGER N, KADIC M, et al. Tailored 3-D mechanical metamaterials made by dip-in direct laser writing optical lithography[J]. Advanced Materials, 2012, 24(20): 2710-2714. DOI: 10.1002/adma.v24.20
    [9]
    LONG J, XIONG W, LIU Y, et al. 3-D assembly of aligned carbon nanotubes via femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2017, 44(1): 102003(in Chinese). DOI: 10.3788/CJL
    [10]
    BRAUN A, MAIER S A. Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors[J]. ACS Sensors, 2016, 1(9): 1155-1162. DOI: 10.1021/acssensors.6b00469
    [11]
    BAGHERI S, WEBER K, GISSIBL T, et al. Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement[J]. ACS Photonics, 2015, 2(6): 779-786. DOI: 10.1021/acsphotonics.5b00141
    [12]
    BROWN L V, YANG X, ZHAO K, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)[J]. Nano Letters, 2015, 15(2): 1272-1280. DOI: 10.1021/nl504455s
    [13]
    CHENG F, YANG X, GAO J. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials[J]. Scientific Reports, 2015, 5:14327. DOI: 10.1038/srep14327
    [14]
    BAGHERI S, GIESSEN H, NEUBRECH F. Large-area antenna-assisted seira substrates by laser interference lithography[J]. Advanced Optical Materials, 2014, 2(11): 1050-1056. DOI: 10.1002/adom.201400218
    [15]
    CHANG Y C, LU S C, CHUNG H C, et al. High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography[J]. Scientific Reports, 2013, 3(3):3339. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3842549
    [16]
    ZHAO Z, CAO Y, CAI Y, et al. Oblique colloidal lithography for the fabrication of nonconcentric features[J]. ACS Nano, 2017, 11(7): 6594-6604. DOI: 10.1021/acsnano.6b07867
    [17]
    DU K, DING J, LIU Y, et al. Stencil lithography for scalable micro-and nanomanufacturing[J]. Micromachines, 2017, 8(4): 131. DOI: 10.3390/mi8040131
    [18]
    GUILHABERT B, MASSOUBRE D, RICHARDSON E, et al. Sub-micron lithography using InGaN micro-LEDs: mask-free fabrication of LED arrays[J]. IEEE Photonics Technology Letters, 2012, 24(24): 2221-2224. DOI: 10.1109/LPT.2012.2225612
    [19]
    MIKULICS M, HARDTDEGEN H. Nano-LED array fabrication suitable for future single photon lithography[J]. Nanotechnology, 2015, 26(18): 185302. DOI: 10.1088/0957-4484/26/18/185302
    [20]
    CHALLA P K, KARTANAS T, CHARMET J, et al. Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning[J]. Biomicrofluidics, 2017, 11(1): 014113. DOI: 10.1063/1.4976690
    [21]
    LIN H Y, SHER C W, HSIEH D H, et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold[J]. Photonics Research, 2017, 5(5): 411-416. DOI: 10.1364/PRJ.5.000411
    [22]
    MASUDA H, FUKUDA K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science, 1995, 268(5216): 1466. DOI: 10.1126/science.268.5216.1466
    [23]
    LEE W, PARK S J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures[J]. Chemical reviews, 2014, 114(15): 7487-7556. DOI: 10.1021/cr500002z
    [24]
    MAcFARLANE R J, LEE B, HILL H D, et al. Assembly and organization processes in DNA-directed colloidal crystallization[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10493-10498. DOI: 10.1073/pnas.0900630106
    [25]
    YAN P, FEI G T, SU Y, et al. Anti-counterfeiting of one-dimensional alumina photonic crystal by creating defects[J]. Electrochemical and Solid-State Letters, 2011, 15(3): K23-K26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=571c1bfb7608a8253dda853a35407835
    [26]
    YAO J, LIU Z, LIU Y, et al. Optical negative refraction in bulk metamaterials of nanowires[J]. Science, 2008, 321(5891): 930. DOI: 10.1126/science.1157566
    [27]
    ZHOU L, TAN Y, WANG J, et al. 3-D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398. DOI: 10.1038/nphoton.2016.75
    [28]
    CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub-25nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116. DOI: 10.1063/1.114851
    [29]
    KOOY N, MOHAMED K, PIN L T, et al. A review of roll-to-roll nanoimprint lithography[J]. Nanoscale Research Letters, 2014, 9(1): 320. DOI: 10.1186/1556-276X-9-320
    [30]
    MA P, XU Z, WANG M, et al. Fast fabrication of TiO2 hard stamps for nanoimprint lithography[J]. Materials Research Bulletin, 2017, 90: 253-259. DOI: 10.1016/j.materresbull.2017.03.010
    [31]
    JAIN A, SPANN A, COCHRANE A, et al. Fluid flow in UV nanoimprint lithography with patterned templates[J]. Microelectronic Engineering, 2017, 173: 62-70. DOI: 10.1016/j.mee.2017.04.001
    [32]
    ZHANG L, ZHANG J, YUAN D, et al. Electrochemical nanoimprint lithography directly on n-type crystalline silicon (111) wafer[J]. Electrochemistry Communications, 2017, 75: 1-4. DOI: 10.1016/j.elecom.2016.12.004
    [33]
    MATSUI S, HIROSHIMA H, HIRAI Y, et al. Innovative UV nanoimprint lithography using a condensable alternative chlorofluorocarbon atmosphere[J]. Microelectronic Engineering, 2015, 133(C): 134-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1f795dd0cf1144d8b46311a3c75d713
    [34]
    JI R, HORNUNG M, VERSCHUUREN M A, et al. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing[J]. Microelectronic Engineering, 2010, 87(5): 963-967. DOI: 10.1016-j.mee.2009.11.134/
    [35]
    TALIP N B A, HAYASHI T, TANIGUCHI J, et al. Lifetime amelioration of antireflection structure molds by means of partial-filling ultraviolet nanoimprint lithography[J]. Microelectronic Engineering, 2015, 141: 81-86. DOI: 10.1016/j.mee.2015.01.035
    [36]
    MOONEN P F, VRATZOV B, SMAAL W T T, et al. Flexible thin-film transistors using multistep UV nanoimprint lithography[J]. Organic Electronics, 2012, 13(12): 3004-3013. DOI: 10.1016/j.orgel.2012.09.001
    [37]
    LIU Ch, JIN L D, YE A P. Progress in and prospect of microsphere optical nanoscopy[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70003(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGDJ201607003.htm
    [38]
    YANG H, TROUILLON R, HUSZKA G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862-4870. DOI: 10.1021/acs.nanolett.6b01255
    [39]
    UPPUTURI P K, KRISNAN M S, MOOTHANCHERY M, et al. Photonic nanojet engineering to achieve super-resolution in photoacoustic microscopy: a simulation study[J]. Proceedings of the SPIE, 2017, 10064: 100644S DOI: 10.1117/12.2250483
    [40]
    PISCO M, GALEOTTI F, QUERO G, et al. Nanosphere lithography for optical fiber tip nanoprobes[J]. Light: Science & Applications, 2017, 6(5): e16229. http://www.nature.com/lsa/journal/v6/n5/abs/lsa2016229a.html
    [41]
    JI D, LI T, FUCHS H. Nanosphere lithography for sub-10nm nanogap electrodes[J]. Advanced Electronic Materials, 2017, 3(1): 1600348. DOI: 10.1002/aelm.201600348
    [42]
    CHEN Y F, XU CH, LU B R. A Super resolution nanolithography method using photon nano jetting to cause focusing effect: China, 201410722282.6[P].2015-04-01.
    [43]
    JASCHKE M, BUTT H J. Deposition of organic material by the tip of a scanning force microscope[J]. Langmuir, 1995, 11(4): 1061-1064. DOI: 10.1021/la00004a004
    [44]
    GARCIA R, KNOLL A W, RIEDO E. Advanced scanning probe lithography[J]. Nature Nanotechnology, 2014, 9(8): 577-587. DOI: 10.1038/nnano.2014.157
  • Related Articles

    [1]ZHANG Jun, ZHANG Weiguo. Micro-LED laser lift-off research of GaN on AlN of sapphire substrate[J]. LASER TECHNOLOGY, 2023, 47(1): 25-31. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.004
    [2]HE Yang, YE Xiaohui, ZHENG Xi, FAN Shaoyan, ZHANG Zhicheng, OUYANG Ziqing, LONG Jiangyou. Laser direct fabrication of micro/nano structure on switch panel and its superhydrophobic performance[J]. LASER TECHNOLOGY, 2022, 46(6): 796-801. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.014
    [3]LI Yue, WANG Yan. Photocatalytic performance of Ag-TiO2 micro/nanostructures fabricated by femtosecond laser[J]. LASER TECHNOLOGY, 2022, 46(2): 163-168. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.003
    [4]JIANG Dafei, JIANG Xiaowei, FANG Xiaomin. Improve the extraction efficiency of graphene[J]. LASER TECHNOLOGY, 2021, 45(2): 186-190. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.010
    [5]LUO Jinfeng, SONG Shijun, WANG Pingqiu, LIU Quanxi. Study on removal mechanism of micro-/nano-particles on silicon surface by laser plasma[J]. LASER TECHNOLOGY, 2018, 42(4): 567-571. DOI: 10.7510/jgjs.issn.1001-3806.2018.04.025
    [6]XIA Shengquan, LV Xuechao, WANG Xiaobo, HE Jianjun, WANG Wei, DOU Zhengping. Research advance of measurement of thermo-physical property of micro-nano material with femtosecond laser[J]. LASER TECHNOLOGY, 2016, 40(4): 506-511. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.011
    [7]SHANG Hai, DANG Xueming. Model of scattering measurement for 1-D micro- and nano-periodic structure[J]. LASER TECHNOLOGY, 2016, 40(2): 250-253. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.021
    [8]ZHAGN Ling, ZENG Yan, CHEN Guoqing, ZHOU Ai. Energy distribution of wedge-shaped micro/nano fiber[J]. LASER TECHNOLOGY, 2015, 39(5): 689-693. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.022
    [9]HU Si-yi, XU Zhong-bao. Design of objective lens with long focus depth for digital grayscale lithography[J]. LASER TECHNOLOGY, 2013, 37(4): 464-468. DOI: 10.7510/jgjs.issn.1001-3806.2013.04.011
    [10]ZHENG Zhi-wei, REN Wei-hong, ZHAO Chu-jun, WEN Shuang-chun, FAN Dian-yuan. Guiding and far-field radiation characteristics of micro/nano optical fibers[J]. LASER TECHNOLOGY, 2009, 33(5): 497-499,502. DOI: 10.3969/j.issn.1001-3806.2009.05.011

Catalog

    Article views (16) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return