HTML
-
视场角测试与链路能量有关,不同链路能量所对应的可通信视场不同,在保证基本链路通畅情况下,理论计算不同链路下的能量余量是决定视场角的重要因素。考虑各种损耗因素,通信链路传输方程模型可以描述成为:
式中,Pγ为激光通信链路余量, Pt为激光器发射能量, Pe为发射光路能量损耗, Pa为接收光路能量损耗, Lg为空间扩展损耗, Pd为探测器增益。依据(1)式,对1km, 2km, 3km, 4km距离下的链路能量进行了计算,具体初始参量及对应计算结果如表 1所示。
link distance/km 1 2 3 4 emit energy Pt/dBm 15 emission path loss Pe/dB 1 received path loss Pa/dB 1 geometric loss Lg/dB 19 25.1 28.6 31.1 image receiving energy/dBm -6 -12.1 -15.6 -18.1 detector sensitivity Pd/dBm -30 link margin Pγ/dB 24 17.9 14.4 11.9 Table 1. Prediction of portable laser communication link
通过表 1中的计算结果可知,1km, 2km, 3km, 4km距离下的链路余量均存在,可满足激光通信视场角测试条件。
-
根据设计装置原理和链路能量,对便携式激光通信系统的接收视场角测试装置进行了搭建及试验,如图 2所示。其中,高精度自准直仪选用Trioptics公司的TA300-57,该仪器由1个高分辨率的CCD传感器和配套的物镜管组合而成,视场角为0.61°×0.46°;测量精度为0.5″。功率计选用宝工的MT-7601-C型光纤功率计,测量范围为-70dBm~+6dBm,测量精度为0.01dBm,校正波长包括850nm, 1300nm, 1310nm, 1490nm, 1500nm和1625nm。
具体测试步骤如下:(1)电源供电,由准直平行光源发出1550nm激光进入待测光端机;(2)调节方位俯仰台,使其对准准直平行光源,直至待测光端机的接收能量达到最大;(3)调节能量衰减片,使待测光端机接收到的能量符合链路模拟的接收能量;(4)调节平面反射镜,使高精度自准直仪发出的十字丝返回自身的靶面内;(5)使用高精度自准直仪自带的调节功能,将十字丝调零;(6)调节方位俯仰台的1维(向上),使光纤功率计接收到的光功率逐渐降低至满足激光通信所需的最低能量(取-30dBm),测量此时高精度自准直仪偏转的角度θ1;(7)调节方位俯仰台的1维(向下),光纤功率计接收能量先上升至最大值然后逐渐减低,直至光纤功率计接收光功率为-30dBm,测量此时高精度自准直仪偏转的角度θ2。
通过以上步骤完成便携式激光通信视场角的测试,测量过程中,向上和向下能量衰减间隔为1dBm时,待测光端机偏移中心视场角度,得到待测光端机的角度变化范围。通过多次测量,并将测试数据进行处理,求出上下和左右视场的平均值,进而测得最大视场角。图 3中给出测量1km距离视场角过程中,向上运动到-30dBm时的一次测量角度。图 4中给出了向下运动到-30dBm时高精度自准直仪的一次测量角度。
在此基础上,1km, 2km, 3km, 4km距离下的测试数据如表 2所示。
基于此,图 5给出通信距离与视场角的曲线关系。
distance/dBm upward motionangle/(″) downward motionangle/(″) field of view 2ω /(″) /mrad 1km 123.46 107.41 230.87 1.12 2km 95.10 100.55 195.65 0.94 3km 105.24 96.32 201.56 0.87 4km 97.01 72.89 169.90 0.76 Table 2. Data table of field angle
通过以上可以看出,1km, 2km, 3km, 4km不同通信距离下,在探测器灵敏度为固定-30dBm时,测得激光通信接收视场随着距离的增大而逐渐减小,与能量余量与通信距离的变化趋势相同,符合理论通信视场情况。利用该方法对视场角的测量精度高,可以实现更远距离下的通信接收视场测量。