Advanced Search
WANG Yan'an, KE Yizhi, CUI Ennan, PAN Bin, CAI Meiling, CHEN Song, NIE Jialin, HU Miao. Experimental study about power balance mechanism in dual-frequency microchip lasers[J]. LASER TECHNOLOGY, 2018, 42(5): 651-654. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.013
Citation: WANG Yan'an, KE Yizhi, CUI Ennan, PAN Bin, CAI Meiling, CHEN Song, NIE Jialin, HU Miao. Experimental study about power balance mechanism in dual-frequency microchip lasers[J]. LASER TECHNOLOGY, 2018, 42(5): 651-654. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.013

Experimental study about power balance mechanism in dual-frequency microchip lasers

More Information
  • Received Date: November 19, 2017
  • Revised Date: December 19, 2017
  • Published Date: September 24, 2018
  • In order to investigate output power balance mechanism of Nd:YVO4 microchip dual-frequency lasers (DFL), the relationships among pump current, operating temperature and dual-mode wavelengths of microchip lasers were analyzed by means of experiments. With the increase of pump current of DFL, the balance of DFL power was re-achieved by lowering the temperature of laser crystal. Finally, the power-balanced temperature of DFL with different pump currents and the relationship between dual-frequency power product and pump current of DFL were obtained. The result shows that, the power-balanced temperature of DFL signal is negatively correlated with pump current sectionally, and dual frequency power product is positively correlated with pump current. It indicated that, power-balanced power-adjustable dual-frequency laser signal output can be achieved by changing pump current and controlling temperature.
  • [1]
    YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3):314-335. DOI: 10.1109/JLT.2008.2009551
    [2]
    WAN X J, ZHANG Sh L, TAN Y D. Development of optical feedback technology of LD pumped microchip lasers[J]. Laser Technology, 2006, 30(1):9-12(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS200601002.htm
    [3]
    KOENIG S, LOPEZ-DIAZ D, ANTES J, et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013, 7(12):977-981. DOI: 10.1038/nphoton.2013.275
    [4]
    SEEDS A J, FICE M J, BALAKIER K, et al. Coherent terahertz photonics[J]. Optics Express, 2013, 21(19):22988-23000. DOI: 10.1364/OE.21.022988
    [5]
    SEEDS A J, SHAMS H, FICE M J, et al. THz photonics for wireless communications[J]. Journal of Lightwave Technology, 2015, 33(3):579-586. DOI: 10.1109/JLT.2014.2355137
    [6]
    PILLET G, MORVAN L, BRUNEL M, et al. Dual-frequency laser at 1.5μm for optical distribution and generation of high-purity microwave signal[J]. Journal of Lightwave Technology, 2008, 26(15):2764-2773. DOI: 10.1109/JLT.2008.927209
    [7]
    CHENG C, ZHANG S. Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference[J]. Journal of Physics, 2009, D42(15):155107. http://adsabs.harvard.edu/abs/2009JPhD...42o5107R
    [8]
    DÉLEN X, BALEMBOIS F, GEORGES P. Temperature dependence of the emission cross section of Nd:YVO4 around 1064nm and consequences on laser operation[J]. Journal of the Optical Society of America, 2011, B28(5):972-976. http://www.opticsinfobase.org/abstract.cfm?uri=josab-28-5-972
    [9]
    NOTAKE T, SAITO T, TATEMATSU Y, et al. Development of a novel high power sub-THz secong harmonic gyrotron[J]. Physical Review Letters, 2009, 103(22):225002. DOI: 10.1103/PhysRevLett.103.225002
    [10]
    FORD C J B, SIMPSON P J, ZAILER I, et al. Charging and double-frequency Aharonov-Bohm effects in an open system[J]. Physical Review, 1994, B49(24):17456-17459. http://www.ncbi.nlm.nih.gov/pubmed/10010934
    [11]
    HU M, SUN X, LI Q L, et al. Investigation of mode competition in dual-frequency Nd:YVO4 microchip laser[J]. Chinese Journal of Lasers, 2015, 42(7):0702009(in Chinese). DOI: 10.3788/CJL
    [12]
    GOUËT J L, MORVAN L, ALOUINI M, et al. Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation:beyond the standard limit of tunability[J]. Optics Letters, 2007, 32(9):1090-1092. http://www.ncbi.nlm.nih.gov/pubmed/17410245
    [13]
    GUDELEV V G, MASHKO V V, NIKEENKO N K, et al. Diode-pumped cw tunable two-frequency YAG:Nd3+, laser with coupled resonators[J]. Applied Physics, 2003, B76(3):249-252. DOI: 10.1007/s00340-003-1128-4
    [14]
    CHEN X F, DENG Zh Ch, YAO J P. Photonic generation of microwave signal using a dual-wavelength single -longitudinal-mode fiber ring laser[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2):804-809.
    [15]
    ZHOU B Q, GAO Y Zh, CHEN Ch R, et al. Principles of lasers[M]. 6th ed.Beijing:National Defence Industry Press, 2008:72-75(in Chinese).
    [16]
    SCHMITT N P, PEUSER P, HEINEMANN S, et al. A model describing the signal and multiple line spectra of tunable microcrystal laser[J]. Optics & Quantum Electronics, 1993, 25(8):527-544. DOI: 10.1007/BF00308308
    [17]
    LIU W S, JIANG M, CHEN D R, et al. Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwane generation[J]. Journal of Lightwave Technology, 2009, 27(20):4455-4459. http://ieeexplore.ieee.org/document/5061870/
    [18]
    HU M, ZHANG Y, GONG X R, et al. Invertigation of power equalization in a dual-frequency Nd:YVO4 microchip laser[J]. Journal of Optorlectronics·Laser, 2016, 27(2):145-149(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GDZJ201602004.htm
    [19]
    ZHAO J T, FENG G Y, YANG H M, et al. Analysis of thermal effect and its influence on output power of thin disk laser[J]. Acta Physica Sinica, 2012, 61(8):084208(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201208031
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (3) PDF downloads (6) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return