Citation: | GUO Xiangyu, NI Mao, LIU Huaming, LEI Kaiyun, DU Fu. Design and numerical simulation of broad coaxial powder feeding nozzles for laser cladding[J]. LASER TECHNOLOGY, 2018, 42(3): 362-368. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.014 |
[1] |
ZHANG A F, LI D Ch, LU B H. Research progress in laser direct metal rapid prototyping technology[J]. Ordnance Material Science and Engineering, 2007, 30(5):68-72(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCKG200705023.htm
|
[2] |
LU Q P, ZHANG A F, LI D Ch, et al. Numerical simulation and experimental research on gas-carrier coaxial powder nozzle[J]. Chinese Journal of Lasers, 2010, 37(12):3162-3167(in Chinese). DOI: 10.3788/CJL
|
[3] |
ZHANG D Y, WANG R Z, ZHAO J Zh, et al. Latest advance of laser direct manufacturing of metallic parts[J]. Chinese Journal of Lasers, 2010, 37(1):18-25(in Chinese). DOI: 10.3788/JCL
|
[4] |
SONG J L, LI Y T, DENG Q L, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14):29-39(in Chinese). DOI: 10.3901/JME.2010.14.029
|
[5] |
ZHONG M L, NING G Q, LIU W J. Fundamental aspects on laser rapid & flexible manufacturing of metallic components[J]. Applied Laser, 2011, 21(2):76-78(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYJG200102000.htm
|
[6] |
SHI J J. Research on laser wide-band cladding device and process[D].Suzhou: Soochow University, 2007: 1-2(in Chinese).
|
[7] |
XUE F, WANG Y M, LIU Sh Y. Research on coaxial powder feeding nozzle for laser cladding[J]. Machine Building & Automation, 2015, 44(3):46-49(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZZHD201503015.htm
|
[8] |
LAMIKIZ A, TABERNERO I, UKAR E, et al. Current designs of coaxial nozzles for laser cladding[J]. Recent Patents on Mechanical Engineering, 2011, 4(1):29-36. http://www.ingentaconnect.com/content/ben/meng/2011/00000004/00000001/art00003
|
[9] |
YAN J, BATTIATO I, FADEL G. Design of injection nozzle in direct metal deposition (DMD) manufacturing of thin-walled structures based on 3-D models[J]. International Journal of Advanced Manufacturing Technology, 2016, 91(4):605-616. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2c6219ab5ee8076540c2f3cf9104668
|
[10] |
GRIGORYANTS A G, TRETYAKOV R S, SHIGANOV I N, et al. Optimization of the shape of nozzles for coaxial laser cladding[J]. Welding International, 2015, 29(8):639-642. DOI: 10.1080/01431161.2014.967043
|
[11] |
LIU S, ZHANG Y, KOVACEVIC R. Numerical simulation and experimental study of powder flow distribution in high power direct diode laser cladding process[J]. Lasers in Manufacturing & Materials Processing, 2015, 2(4):199-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1dcfc8e0e478309c836a5138afd46b4
|
[12] |
LEI D Zh, SHI Sh H, FU G Y. Research on inside-laser powder feeding nozzle for broadband laser cladding[J]. China Mechanical Engineering, 2015, 26(22):3076-3081(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgjxgc201522015
|
[13] |
HU X D, ZHU L Q, YAO J H. Design of lateral powder nozzle for broad beam laser cladding[J]. Light Industry Machinery, 2014, 32(3):10-12(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qgjx201403003
|
[14] |
ZHU L Q. Nozzle design and numerical optimization of laser broadband side feeding[D]. Hangzhou: Zhejiang University of Technology, 2013: 16-19(in Chinese).
|
[15] |
QIN X P, LIU H M, HUA L, et al. Broadband laser cladding with coaxial powder feeding device and feeding method: China, 106521485A[P]. 2017-03-22(in Chinese).
|
[16] |
WANG W, CAI L, YANG G, et al. Research on the coaxial powder feeding nozzle for laser cladding[J]. Chinese Journal of Lasers, 2012, 39(4):403003(in Chinese). DOI: 10.3788/CJL
|
[17] |
ZHENG L M. ANSYS Fluent 15.0 fluid computing from entry to mastery[M].Beijing:Electronics Industry Press, 2015:304-305(in Chinese).
|
[18] |
ZHANG A F, LI D Ch, ZHANG L F, et al. 3-D numerical simulation of coaxial powder feeding nozzle powder convergence characteristics[J]. Infrared and Laser Engineering, 2011, 40(5):859-863(in Chinese).
|
[19] |
DENG Zh B, MEI X Q, XIANG Zh W, et al. Numerical analysis of powder flow filed on coaxial feeding nozzle forced by gas in 3-D printing[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(s2):165-172(in Chinese).
|
[20] |
LIU J, LI L. Study on cross-section clad profile in coaxial single-pass cladding with a low-power laser[J]. Optics & Laser Technology, 2005, 37(6):478-482. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ad90b0c69c50cc3a1fe5a8ed3d3b49c
|
[21] |
KOVALEVA I, KOVALEV O, ZAITSEV A V, et al. Modeling and numerical study of light-propulsion phenomena of particles acceleration in coaxial laser powder cladding[J]. Physics Procedia, 2014, 56:439-449. DOI: 10.1016/j.phpro.2014.08.147
|
[22] |
LEI D Zh, SHI Sh H, FU G Y. Research of collimator hood of inside-laser powder feeding nozzle for broadband laser cladding[J]. Laser Technology, 2015, 39(5):590-593(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201505002
|
[23] |
LIU H, HE X L, YU G, et al. Numerical simulation of powder transport behavior in laser cladding with coaxial powder feeding[J]. Science China (Physics, Mechanics & Astronomy), 2015, 58(10):34-43. DOI: 10.1007/s11433-015-5705-4
|
[1] | ZHAN Shengbao, WEN Jun, WU Lei, DING Jian. Gain transient performance of Er/Yb co-doped fiber amplifiers in optical packet and circuit integrated network[J]. LASER TECHNOLOGY, 2015, 39(6): 815-819. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.018 |
[2] | ZHAN Shengbao, DING Jian. Recent study progress of gain transient control for EDFA[J]. LASER TECHNOLOGY, 2015, 39(5): 706-711. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.026 |
[3] | WANG Feng, SUN Kaijiang, XIANG Xiaomei. Research of automatic gain control technology based on photomultipliers[J]. LASER TECHNOLOGY, 2015, 39(4): 510-514. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.018 |
[4] | HE Shi-kun, LIANG Liang, ZHANG Ling, CAO Jian-jian. Study on optical amplification characteristics of photonic crystal with defect as gain medium[J]. LASER TECHNOLOGY, 2012, 36(3): 368-371. |
[5] | WANG Xiang-ru, XIONG Cai-dong, DENG Hao, LUO Juan-yan, QIU Qi, LIAO Yun. Theoretical discussion on gain characteristics of gain-guided and index antiguided fiber amplifiers[J]. LASER TECHNOLOGY, 2009, 33(5): 535-537,540. DOI: 10.3969/j.issn.1001-3806.2009.05.017 |
[6] | ZHONG Xian-qiong, XIANG An-ping. Modulation instability gain spectrum varying with the incident optical power in case of high-order dispersion[J]. LASER TECHNOLOGY, 2007, 31(4): 364-366,377. |
[7] | CUI Ying-chao, ZHANG Shu-lian, Feng Jin-yuan. The gain and polarization characteristics of semiconductor optical amplifiers[J]. LASER TECHNOLOGY, 2005, 29(5): 462-465,483. |
[8] | HUANG Guang-yan, YANG Ya-pei, DAI Ji-zhi, LI Xiao-hui, LIU Zhen, CHENG Juan-juan. Simulation of the field of the glass waveguide with gain[J]. LASER TECHNOLOGY, 2005, 29(1): 35-37. |
[9] | Zheng Zezhou, Zhang Xinliang, Huang Dexiu. Ultrafast dynamic gain characteristics of semiconductor optical amplifiers[J]. LASER TECHNOLOGY, 2003, 27(3): 168-171. |
[10] | Yang Yang, Liu Hong-fa, Zhang Guo-wei. Study on the gain-switching characteristics of Ti:sapphire lasers[J]. LASER TECHNOLOGY, 1995, 19(4): 204-208. |
1. |
严博, 苏金善. 激光遥感探测装置固有特性的观测与分析. 伊犁师范学院学报(自然科学版). 2020(01): 58-62 .
![]() | |
2. |
赵洪博, 张达, 杨健坤, 孟繁萃, 张明. 小波分层法在激光多普勒测速信号中的应用. 激光技术. 2019(01): 103-108 .
![]() | |
3. |
宋莹, 赵旭龙, 姜岩秀, 巴音贺希格, 齐向东. 移栅型全息光栅曝光干涉条纹锁定. 中国激光. 2017(05): 233-240 .
![]() |