Advanced Search
LIU Yaping, PENG Xujin, ZHAO Gang, GAO Heng, TAO Gang, FU Sichao, QIN Ying. Structure design and analysis of cooling parts of compact lasers[J]. LASER TECHNOLOGY, 2017, 41(6): 886-890. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.024
Citation: LIU Yaping, PENG Xujin, ZHAO Gang, GAO Heng, TAO Gang, FU Sichao, QIN Ying. Structure design and analysis of cooling parts of compact lasers[J]. LASER TECHNOLOGY, 2017, 41(6): 886-890. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.024

Structure design and analysis of cooling parts of compact lasers

More Information
  • Received Date: January 10, 2017
  • Revised Date: February 16, 2017
  • Published Date: November 24, 2017
  • In order to complete the design of cooling components within the limited envelope structure of a small laser and guarantee installation accuracy of the laser and cooling parts, the accuracy of transmitting telescope and heat dissipation of water tank, according to the given technical specifications of laser and the determined metal materials and welding methods, the detailed integration and miniaturization design of the cooling parts were carried out. Finite element analysis method and SolidWorks software were used to analyze the static state of the important parts in the cooling parts to ensure its accuracy and reliability. Finally, temperature characteristics test, shock and vibration characteristics test and impact vibration test under high and low temperatures were carried out. The results show that some quality problems, such as tearing and leakage, do not appear in the cooling parts. Beam divergence angle of 2.5mrad, output energy of 86mJ and pulse width of 12ns meet the design requirements. The design is stable and reliable, and can be used in a wide range of airborne laser range finders or indicators.
  • [1]
    MA Q, TIAN Z H, WANG Z F, et al. A theoretical model of high power CSEL based on the thermal-offset-current [J]. Chinese Journal of Luminescence, 2009, 30(4):463-466.
    [2]
    CHILLAR J, BUTTERWORTH S, ZEITSCHEL A, et al. High power optically pumped semiconductor lasers[J]. Proceedings of the SPIE, 2004, 5332: 143-150. DOI: 10.1117/12.549003
    [3]
    LI X Y, WU Ch S, LI W Sh. Study on the progress of welding science and technology in China[J]. Journal of Mechanical Engineering, 2012, 48(60):19-23(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXXB201206003.htm
    [4]
    YAN X F. Application and development trend of the vacuum EB welding in airborne equipment in China[J]. Aviation Manufacturing Technology, 2005, 9:90-92(in Chinese). http://d.wanfangdata.com.cn/Periodical/hkgyjs200509016
    [5]
    ZHANG Y, JIN G H, JIANG Y, et al. Design of back suspension support structures for large scale dynamic scanning mirrors [J]. Laser Technology, 2016, 40(3):441-446(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201603030.htm
    [6]
    HAN G Y, ZHANG G L, CAO L H, et al. Opto-mechanical structural design of laser emitting system for SLR[J].Chinese Journal of Scientific Instrument, 2011, 32(7):1669-1674(in Chinese). http://d.wanfangdata.com.cn/Periodical/yqyb201111004
    [7]
    LI Ch, HE X. Design of lightweight large aperture mirrors and supporting structures [J]. Laser Technology, 2015, 39(3):337-340(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201503012.htm
    [8]
    PENG Y F, WU D Y, ZHANG Y, et al. Simulation and structure design of a high power laser mirror with self-compensation of thermal distortion[J]. Laser Technology, 2012, 36(1):120-123(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201201032.htm
    [9]
    TIAN Ch Q, XU H B, CAO H Zh, et al. Cooling technology for high-power solid-state laser[J]. Chinese Journal of Lasers, 2009, 36(7):1686-1689(in Chinese). DOI: 10.3788/JCL
    [10]
    ZHANG Zh. Study of the micro-channel cooling technology for end-pumped solid state lasers[D]. Harbin: Harbin Institute of Technology, 2008: 14-20(in Chinese).
    [11]
    JIANG X Y, ZHENG J G, YAN X W, et al. Structural design of the water cooling system in a high power end cooled Yb:YAG slab laser[J]. Laser Technology, 2011, 35(5):629-631(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201105016.htm
    [12]
    JIA Ch Y, WANG Ch, LIU W F, et al. Cooling liquid for liquid immersed solid-state laser[J]. Modern Chemical Industry, 2015, 35(10):95-97(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-XDHG201510025.htm
    [13]
    LV K P, TANG X J, LIU L, et al. Numerical analysis of the cooling structure of side-pump solid laser[J]. Laser and Infrared, 2016, 46(11):1345-1348(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGHW201611010.htm
    [14]
    ALFORD W J. High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser [J]. Journal of the Optical Society of America, 2002, B19(4):663-666. http://www.opticsinfobase.org/josab/abstract.cfm?id=68490
    [15]
    RICHARDSON D, NILSSON J, CLARKSON W. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America, 2010, B27(11):63-92. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0217197226/
    [16]
    JING H Q, ZHONG L, NI Y X, et al. Design and simulation of a high-efficiency cooling heat-sink structure using fluid-thermodynamics[J]. Journal of Semiconductors, 2015, 36(10):1-6. http://d.old.wanfangdata.com.cn/Periodical/bdtxb201510007
    [17]
    LI Zh G. Heat transfer and thermal stress study of high power solid laser[D].Beijing: University of Chinese Academy of Science, 2008: 3-8(in Chinese).
    [18]
    YANG Ch, ZHAO G, GAO H, et al. Airborne laser with secondary circulating cooling: Chinese: ZL201010052651.7[P]. 2013-11-27(in Chinese).
    [19]
    ZHANG G, LI J, PENG X J, et al. Compact repetitive diode-pumped slab lasers without thermoelectric coolers [J]. Laser Technology, 2016, 40(5):625-628(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201605002
  • Cited by

    Periodical cited type(6)

    1. 李明,王禹凝,刘超智,刘天红,郑权. 全固态激光器散热结构设计及优化. 制造业自动化. 2022(09): 40-43 .
    2. 耿园园,徐光烁,谢桂娟,吕华昌,赵开瑞,褚凡忠. 机载激光测照器发射光轴不稳定度仿真分析. 激光与红外. 2021(05): 640-645 .
    3. 刘亚萍,彭绪金,赵刚,陶刚,高恒,白杨,唐伟,罗杰平. 重频50Hz风冷YAG固体激光器热设计及仿真分析. 激光技术. 2021(06): 735-739 . 本站查看
    4. 高恒,贾凯,杨闯,刘亚萍,赵刚,高军. 激光二极管侧面抽运免温控激光器的研究. 激光技术. 2019(01): 1-5 . 本站查看
    5. 高恒,刘佳铭,杨闯,赵刚,李斌,彭绪金,刘亚萍. 用于远程激光测距机的小体积高功率固体激光器. 激光技术. 2019(05): 7-10 . 本站查看
    6. 艾尼江·阿塔伍拉,阿布都热苏力·阿不都热西提. 基于高斯光束的飞秒激光光束质量检测技术. 激光技术. 2019(06): 846-849 . 本站查看

    Other cited types(1)

Catalog

    Article views (8) PDF downloads (3) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return