Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 41 Issue 6
Sep.  2017
Article Contents
Turn off MathJax

Citation:

Performance test and analysis of 913-element deformable mirrors

  • Corresponding author: GUAN Chunlin, clguan@ioe.ac.cn
  • Received Date: 2017-01-18
    Accepted Date: 2017-03-27
  • In order to correct high order aberration for an adaptive optics (AO) system and make it operate normally at cryogenic temperature, a 913-element discrete actuators continuous facesheet deformable mirror (DM) was developed. A Veeco interferometer in Ø300mm diameter was used to examine partial static performance of the deformable mirror:the influence function of an individual actuator, flattening test and the correction capability of the deformable mirror about Zernike aberrations fitting. The surface of DM from 20℃ to -10℃ was measured by a 4-D dynamic interferometer. The testing results show that the max correction ability of the deformable mirror actuated by an individual actuator is ±3.5μm. The distance between the neighbor actuators is 9.8μm and the coupling between the neighbor actuators is 9.3%. The surface of the deformable mirror after flattening is really smooth, of which the PV is 66.0nm and the RMS is 5.0nm. The fitting capability of the Zernike polynomials of the 913-element deformable mirror satisfies the demand of the adaptive optics. The thermally induced surface deformation didn't influence the performance of DM at low temperature. According to these tests, the 913-element deformable mirror satisfies the actual demands of the adaptive optics system.
  • 加载中
  • [1]

    HARDY J W. Adaptive optics for astronomical telescopes[M]. New York, USA:Oxford University Press, 1998:176-192.
    [2]

    JIANG W H, ZHANG Y D, RAO Ch H, et al. Progress on adaptive optics of Institute of Optics and Electronics, Chinese Academy of Science[J]. Acta Optica Sinica, 2011, 31(9):0900106(in Chinese). doi: 10.3788/AOS
    [3]

    SINQUIN J C, BASTARD A, BOYER C, et al. TMT DMs final design and advanced prototyping results at Cilas[C]//Adaptive Optics Systems Ⅲ. Bellingham, USA: Spie-Int Soc Optical Engineering, 2012: 844706.
    [4]

    LIN X D, LIU X Y, WANG J L, et al. Development and performance test of the 961-element deformable mirror[J]. Acta Optica Sinica, 2013, 33(6):601001(in Chinese). doi: 10.3788/AOS
    [5]

    LOWREY W H, WYNIA J L, EALEY M A. Characterization of three advanced deformable mirrors[C]//Propagation and Imaging Through the Atmosphere Ⅱ. Bellingham, USA: Spie-Int Soc Optical Engineering, 1998: 388-393.
    [6]

    LING N. Wave-front correctors of adaptive optics[J]. Optical Technology, 1998, 24(3):12-16(in Chinese)
    [7]

    JIANG W H, WANG Ch H, LING N, et al. 61-element adaptive optical system[J]. Chinese Journal of Quantum Electronics, 1998, 15(2):193-199(in Chinese).
    [8]

    PRICE T R, EALE M A. Adaptive tertiary mirror for segmented mirror control[C]//UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts. Bellingham, USA: Spie-Int Soc Optical Engineering, 2004: 157-164.
    [9]

    NING Y. Performance test and application study of a bimorph deformable mirror[D].Changsha: National University of Defense Technology, 2008: 55-115(in Chinese).
    [10]

    ZHOU H, NING Y, GUAN Ch L, et al. Design and fabrication of prototype of bimorph deformable mirror[J]. Acta Optica Sinica, 2009, 29(6):1437-1442(in Chinese). doi: 10.3788/AOS
    [11]

    HAMELINCK R, ROSIELLE N, KAPPELHOF P, et al. Large adaptive deformable membrane mirror with high actuator density[C]//Advancements in Adaptive Optics. Bellingham, USA: Spie-Int Soc Optical Engineering, 2004: 1482-1492.
    [12]

    PATERSON C, MUNRO I, DAINTY C. A low cost adaptive optics using a membrane mirror[J]. Optics Express, 2000, 6(9):175-185. doi: 10.1364/OE.6.000175
    [13]

    COMELISSEN S A, BIERDEN P A, BIFANO T G. A 4096 element continuous MEMS deformable mirror for high-contrast imaging[C]//MEMS Adaptive Optics Ⅱ. Bellingham, USA: Spie-Int Soc Optical Engineering, 2008: V8880.
    [14]

    GALLIENI D, ANACLERIO E, GLAZZARINI P, et al. LBT adaptive secondary units final design and construction[C]//Adaptive Optical System Technologies. Bellingham, USA: Spie-Int Soc Optical Engineering, 2003: 765-772.
    [15]

    FAN X L, GUAN Ch L, RAO Ch H. Wavefront fitting capability analysis of 1.8m telescope secondry mirror[J]. Acta Optica Sinica, 2011, 31(8):0822002(in Chinese).
    [16]

    EALEY M A, WELLMAN J A. Deformable mirrors: design fundamentals, key performance specifications, and parametric trades[C]//Active and Adaptive Optical Components. Bellingham, USA: Spie-Int Soc Optical Engineering, 1992: 36-51.
    [17]

    HUANG L H, RAO C H, JIANG W H. Modified Gaussian influence function of deformable mirror actuators[J]. Optics Express, 2008, 16(1):108-114. doi: 10.1364/OE.16.000108
    [18]

    ALLEN J G, BROWN J M, CHRISTOU J C, et al. Starfire optical range 3.5m telescope adaptive optical system[J]. Proceedings of the SPIE, 1998, 3353:22-33.
    [19]

    SIVARAMAKRISHNAN A, OPPENHEIMER B R. Deformable mirror calibration for adaptive optics systems[J]. Proceedings of the SPIE, 1998, 3353:910-916. doi: 10.1117/12.321670
    [20]

    NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3):207-211. doi: 10.1364/JOSA.66.000207
    [21]

    WANG J Y, SILVA D E. Wave-front interpretation with Zernike polynomials[J]. Applied Optics, 1980, 19(9):1510-1518. doi: 10.1364/AO.19.001510
    [22]

    BOYER C, ADKINS S, ANDERSEN D R, et al. Adaptive optics program at TMT[C]//Adaptive Optics Systems Ⅳ. Bellingham, USA: Spie-Int Soc Optical Engineering, 2014: 91480X.
    [23]

    LIGHTSEY P A, ATKINSON C B, CLAMPIN M C, et al. James Webb Space Telescope:large deployable cryogenic telescope in space[J]. Optical Engineering, 2012, 51(1):011003. doi: 10.1117/1.OE.51.1.011003
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article views(5222) PDF downloads(184) Cited by()

Proportional views

Performance test and analysis of 913-element deformable mirrors

    Corresponding author: GUAN Chunlin, clguan@ioe.ac.cn
  • 1. Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: In order to correct high order aberration for an adaptive optics (AO) system and make it operate normally at cryogenic temperature, a 913-element discrete actuators continuous facesheet deformable mirror (DM) was developed. A Veeco interferometer in Ø300mm diameter was used to examine partial static performance of the deformable mirror:the influence function of an individual actuator, flattening test and the correction capability of the deformable mirror about Zernike aberrations fitting. The surface of DM from 20℃ to -10℃ was measured by a 4-D dynamic interferometer. The testing results show that the max correction ability of the deformable mirror actuated by an individual actuator is ±3.5μm. The distance between the neighbor actuators is 9.8μm and the coupling between the neighbor actuators is 9.3%. The surface of the deformable mirror after flattening is really smooth, of which the PV is 66.0nm and the RMS is 5.0nm. The fitting capability of the Zernike polynomials of the 913-element deformable mirror satisfies the demand of the adaptive optics. The thermally induced surface deformation didn't influence the performance of DM at low temperature. According to these tests, the 913-element deformable mirror satisfies the actual demands of the adaptive optics system.

引言
  • 变形镜(deformable mirror,DM)是自适应光学系统[1-2]的核心器件,是通过改变光波前传输的光程或改变传输介质的折射率来改变入射光波前的相位结构,从而达到对波面像差进行校正的目的。一般要求变形镜有足够大的校正量、足够多的校正单元数。随着望远镜的口径越来越大,变形镜的尺寸也越来越大,单元数越来越多[3-4], 千单元变形镜的研制成为必然。

    目前变形镜的主要实现形式有:分立式连续表面变形镜[5-7]、拼接式变形镜[8]、双压电片变形镜[9-10]、薄膜变形镜[11-12]、微机电系统(micro-electro-mechanical system,MEMS)变形镜[13]和变形次镜[14-15]等。其中,分立式连续表面变形镜具有响应速度快、波前拟合误差小、光能利用率高、空间分辨率高、能保持相位连续和易于抛光镀膜等优点;拼接式变形镜由于结构及控制复杂,目前很少使用;双压电片变形镜和薄膜变形镜适合校正大幅值的低阶像差;MEMS变形镜的尺寸较小;变形次镜是针对大口径望远镜的特殊需求而实现的技术,其结构多采用分立式连续表面结构。所以分立式连续表面变形镜是天文望远镜自适应光学系统的首选。

    本文中介绍了中科院光电技术研究所自行研制的913单元分立式连续表面变形镜,对其主要性能指标进行了性能测试分析,包括低温面形测试、整体的校正能力测试等。

1.   913单元变形镜
  • 参考文献[1]和参考文献[16]中为分立式连续表面变形镜建立一套详细的分析设计方法,可以作为设计参考。如图 1a所示,分立式连续表面变形镜由三部分组成:薄镜面、驱动器和底座。913单元分立式连续表面变形镜的薄镜面采用K4玻璃,其直径为Ø320mm,通光口径为Ø288mm。913变形镜的底座采用与镜面一样的材料,以降低温度变化引起的变形镜原始面形变化。驱动器采用传统的层叠式压电陶瓷(piezoelectric ceramic transducer, PZT)驱动器,913个驱动器按正三角形排布,驱动器间距为9.8mm。镜面各驱动点的变形量为±3.5μm。图 1b是913变形镜的实物图。其中支撑薄镜面的最外圈压电陶瓷驱动器尽可能地靠近镜片边缘,这样不仅方便对薄镜面边缘实现支撑加工以得到较好的原始镜面面形而且可以对薄镜面边缘实现主动校正控制以保证通光口径不至于太小。DM镜面镀银膜。

    Figure 1.  Deformable mirror

2.   变形镜的静态性能测试
  • 本文中用大口径Veeco干涉仪测定了913单元分立式连续表面变形镜的几项基本静态性能以确定其是否满足望远镜自适应光学系统的设计需求,包括面形影响函数、Zernike多项式拟合能力和面形展平测试。

  • 驱动器间的交连值和面形影响函数会影响系统对波前的拟合能力。影响函数和交连值是由镜面和驱动器结构及其刚度所决定的[17-18]。变形镜的影响函数是对单个驱动器施加一定电压时产生的镜面变形分布函数。交连值是指一个驱动器工作时,相邻驱动器中心的变形量与工作驱动器中心的最大变形量的比值。测试上用对单个驱动器施加电压后的镜面面形减去施加电压前的镜面面形,即可得到该驱动器的实测影响函数。本文中采用Veeco干涉仪测量了80V电压下,镜面Ø288mm口径内变形镜的影响函数。图 2a是对中心驱动器(编号为1)施加电压后的影响函数。其波峰波谷(peak-to-valley,PV)值约为0.7μm。由于驱动器电压与变形量基本成线性关系,可以算出400V电压下中心驱动器的最大变形量约为3.5μm(正负电压变形方向不一样)。对其它驱动器做测试也表明各驱动点最大校正量是±3.5μm。图 2b是计算相邻驱动器间的耦合情况。通过计算可得到交连值为9.3%,介于5.0%~12.0%之间,说明变形镜的设计是合理的[1]

    Figure 2.  Influence function of center actuator

  • 面形展平测试是要将变形镜镜面展平到最好的面形精度。面形展平测试反应了变形镜的精确控制能力及自适应光学系统工作时所能达到的最大精度[19]。本文中采用迭代控制算法来控制变形镜的面形展平。图 3a显示的是变形镜的原始面形,PV值为240.0nm, 均方根值(root mean square,RMS)为43.0nm,面形像差以离焦为主。图 3b是变形镜通过迭代控制算法展平后的面形,其面形PV值为66.0nm,RMS值为5.0nm。从图中可以看出,展平后变形镜面形达到了很高的面形精度,也很好地反应了变形镜、压电陶瓷驱动器和控制算法的精确控制能力。

    Figure 3.  a—the surface of the deformable mirror before flattening b—the surface of the deformable mirror after flattening c—the fringes of the deformable mirror after flattening

  • 由于大气扰动引起的波前误差一般采用Zernike多项式来描述[20-21],所以变形镜对Zernike多项式拟合能力直接反应了变形镜对波前像差的校正能力。本文中通过变形镜控制电路控制变形镜分别产生归一化的不同Zernike像差:基于测得的影响函数,计算出要产生各个Zernike像差所需的驱动器控制量,并施加电压到对应的各个驱动器上。图 4展示了变形镜生成的前152项Zernike像差。图中变形镜对前152项Zernike像差的拟合残差都小于目标像差的10.0%。其中,当拟合残差小于目标像差的50.0%时,表示变形镜对该像差有一定的校正能力;当拟合残差小于目标像差的10.0%时,表示变形镜对该像差的校正效果良好。图 5中给出了第3项~第152项Zernike像差的拟合残差。从图中可以看出,变形镜对第3项~第77项Zernike像差的拟合残差都小于目标像差的6.0%;对第78项~第152项Zernike像差的拟合残差都小于目标像差的10.0%;这表明变形镜对3至152项Zernike像差校正效果良好。图 6展示了变形镜拟合的字母及图标。字母及图标清晰,反映了变形镜的拟合能力良好。从上述数据可以看出,913变形镜对Zernike多项式像差的拟合能力达到了自适应光学系统的设计要求。

    Figure 4.  Zernike aberrations fitting of 913-element DM

    Figure 5.  The fitting residual of Zernikes

    Figure 6.  The logo fitted by the deformable mirror

3.   变形镜低温变形仿真与测试
  • 在巡天望远镜和地基红外望远镜等系统中,低温光学系统都要求变形镜的低温镜面变形不影响其正常使用[22-23]。本文中介绍了变形镜低温面形测试平台,测量了变形镜20℃~-10℃的低温面形。

  • 图 7所示为变形镜低温面形测试平台。标准镜为直径Ø320mm的融石英玻璃,采用钢带支撑以减小温度变化对标准镜的影响。测量时,干涉仪放置在低温箱外,通过低温箱侧面的光学窗口实时地测量镜面面形;变形镜和标准镜一起放置在低温箱中,防止光学窗口的低温变形对测量结果产生影响。干涉仪采用4-D动态干涉仪,其测量直径为Ø150mm。标准镜安装在电动倾斜架上,测量时可以在低温箱外调节标准镜的倾斜角度。实验时,低温箱从20℃逐步降温到-10℃,并在测量温度点恒温8h以保证变形镜的温度均匀,然后测量此时变形镜的镜面面形。

    Figure 7.  DM test setup

  • 由于4-D动态干涉仪的测量口径只有Ø150mm,所以以下的测量结果都是变形镜中心Ø150mm区域的面形。图 8所示为913单元变形镜在20℃和-10℃时的面形以及相应的面形变化。由于不同温度点的变形镜面形相似,故这里只给出了一个温度点的面形。本文中面形变化是指测量点的变形镜面形减去参考温度点(20℃)的变形镜面形。从图中可以看出,变形镜的主要镜面变形是由压电驱动器热膨胀系数不完全一致引起的局部变形。这些局部变形是可以像面形展平一样通过控制相应驱动器的电压进行自身校正。这些局部变形所需的自身校正量很小,所以不会影响变形镜对系统像差的校正。

    Figure 8.  The surface of the deformable mirror

4.   结论
  • 基于天文望远镜的要求,中国科学院光电技术研究所研制了913单元的分立式连续表面变形镜并对其进行了相关的性能测试。实验结果表明, 该变形镜的各驱动点最大校正量是±3.5μm,交连值为9.3%;该变形镜对第3项~第152项的Zernike像差的拟合残差小于目标像差的10.0%,这表明变形镜对第3项~第152项的Zernike像差校正效果达到了理想要求;该变形镜经展平后镜面面形PV值达到66.0nm,RMS值达到5.0nm;该变形镜从20℃降温到-10℃时中心区域Ø150mm口径内的镜面变形最大为346.0nm;该镜面变形主要是驱动器热膨胀系数不完全一致导致的局部变形,可以用很小的电压实现自行整平,不影响变形镜对系统像差的补偿校正。上述数据表明, 该913分立式连续表面变形镜能够满足大口径天文望远镜的实际使用要求,大大提高了望远镜的分辨率。

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return