Advanced Search
REN Xuanwei, LÜ Yong, NIU Chunhui, CHEN Qingshan. Study on up-conversion luminescence properties of Yb3+/Er3+ co-doped ZnF2 powder[J]. LASER TECHNOLOGY, 2017, 41(6): 793-797. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.005
Citation: REN Xuanwei, LÜ Yong, NIU Chunhui, CHEN Qingshan. Study on up-conversion luminescence properties of Yb3+/Er3+ co-doped ZnF2 powder[J]. LASER TECHNOLOGY, 2017, 41(6): 793-797. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.005

Study on up-conversion luminescence properties of Yb3+/Er3+ co-doped ZnF2 powder

More Information
  • Received Date: December 13, 2016
  • Revised Date: January 03, 2017
  • Published Date: November 24, 2017
  • In order to study luminescent properties of rare earth ions Yb3+ and Er3+ with different co-doped molar fractions and ZnF2 as matrix material, by using high temperature solid state method, samples of rare earth doped by ZnF2 at 820℃ were prepared and the up-conversion emission spectra was measured. Yb3+ and Er3+ photon absorption processes were determined by fitting the excitation power and up-conversion power. The results show that under the excitation of 980nm laser diodes, the samples have 3 up-conversion emission peaks of 533nm, 555nm and 655nm in the visible region. The intensity of red light is greater than that of green light.The number of the absorbed photons is 1.73, 1.75, and 1.88. 3 emission peaks are correspond to two-photon absorption.The materials of rare earth ion doped by ZnF2 have important application prospects in up-conversion red phosphors.
  • [1]
    TIAN J, LUO H F. Research development of up-converting rare earth nanophosphors [J]. Journal of Chemical Education, 2014, 35(20):1-4 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjy201420001
    [2]
    AUZEL F E. Materials and devices using double-pumped phosphors with energy-transfer [J]. Proceedings of the IEEE, 1973, 61(6):758-786. DOI: 10.1109/PROC.1973.9155
    [3]
    WRIGHT J C, ZALUCHA D J, LAUER H V, et al. Up-conversion and excited state energy transfer in rare-earth doped materials [J]. Journal Applied Physics, 1973, 44(2):781-789. DOI: 10.1063/1.1662260
    [4]
    WANG F, BANERJEE D, LIU Y S, et al. Up-conversion nanoparticles in biological labeling, imaging and therapy [J]. Analyst, 2010, 135(8):1839-1854. DOI: 10.1039/c0an00144a
    [5]
    WANG W. Research and application of rare earth up-conversion luminescent materials [J]. Guangzhou Chemical Industry, 2014, 42(11):32-34(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8752935
    [6]
    XIAO S G, YANG X L, LIU Z W, et al. Strong red up-conversion in Er3+ doped zinc oxide powder prepared by fluoride salt decomposition method [J].Optical Materials, 2006, 28(3):285-288. DOI: 10.1016/j.optmat.2004.12.016
    [7]
    HONG G Y. Research progress of rare earth luminescent materials [J]. Journal of Synthetic Crystals, 2015, 44(10):2641-2651(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fgxb201804001
    [8]
    ISHIZUMI A, KANERMITSU Y. Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method [J].Applied Physics Letters, 2005, 86(25):253106. DOI: 10.1063/1.1952576
    [9]
    LÜ Sh Ch, SONG G L, XIAO Zh Y, et al. Preparation and room temperature up-conversion luminescence of nanocrystalline ZnO:Er3+ by chemical precipitation [J]. Journal of the Chinese Rare Earth Society, 2002, 20(s2): 273-275 (in Chinese).
    [10]
    ZHANG L L, GUO C X, ZHAO J J, et al. Synthesis of ZnO:Dy nanopowder and photo luminescence of Dy3+ in ZnO [J].Journal of Rare Earths, 2005, 23(5):607-610.
    [11]
    WU Q, YANG L W, LIU Y X. Frequency up-conversion properties of Er3+/Yb3+ co-doped zinc oxide powders [J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1473-1478(in Chinese). http://www.ncbi.nlm.nih.gov/pubmed/18844142
    [12]
    MIGUEL A, ARRIANDIAGA M A, MOREA R, et al. Down- and up-conversion emissions in Er3+-Yb3+ co-doped TeO2-ZnO-ZnF2 glasses [J]. Journal of Luminescence, 2015, 158(2):142-148.
    [13]
    CHENG X R, YANG K, WANG J K, et al. Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ co-doped CaWO4 material [J]. Optical Materials, 2016, 58(8):449-453. http://www.sciencedirect.com/science/article/pii/S0925346716303238
    [14]
    OFELT G S. Intensities of crystal spectra of rare-earth ions [J].Journal of Chemical Physics, 1962, 37(3):511-520. DOI: 10.1063/1.1701366
    [15]
    ZHANG R R, GAO Y, TANG B. Lanthanide-doped fluoride nanoparticles: up-conversion luminescence and biological applications [J].Journal of Analytical Science, 2010, 26(3):353-357(in Chinese). http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029879681/
    [16]
    CHEN G Y, OHULCHANSKYY T Y, KACHYNSKI A V, et al. Intense visible and near-infrared up-conversion photo luminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490nm [J]. American Chemical Society Nano, 2011, 5(6):4981-4986. http://europepmc.org/articles/PMC3430509/
    [17]
    SUYVER J F, GRIMM J, VEEN M K, et al.Up-conversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+ [J]. Journal of Luminescence, 2006, 117(1):1-12. DOI: 10.1016/j.jlumin.2005.03.011
    [18]
    IVANOVA S E, PELLE F, TKACHU K, et al. Up-conversion luminescence dynamics of Er-doped fluoride crystals for optical converters [J]. Journal of Luminescence, 2008, 128(5):914-917. http://www.sciencedirect.com/science/article/pii/S0022231307003894
    [19]
    JIA Y J, LIN J, ZHANG W J. Effect of fluoride on up-conversion and infrared luminescence properties of Er3+/ Yb3+ co-doped tellurite glass [J]. Chinese Journal of Luminescence, 2014, 35(3):287-292 (in Chinese). DOI: 10.3788/fgxb
    [20]
    MAO Y L, LIN B Ch, FENG S Y, et al. The spectroscopic property of erbium ytterbium co-doped a luminamaterial prepared by sol-gel process [J]. Laser Technology, 2007, 31(6):600-606(in Chin-ese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS200706012.htm
    [21]
    LI B Ch, WANG H B, ZHUO N Z. The rare earth up-conversion luminescent materials overview [J].China Light & Lighting, 2015(6):10-14(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzmdq201506004
    [22]
    ZHANG X Y, GAO D L, LI L, et al. Factors affecting fluorescent efficiency of frequency up-conversion of rare earth [J]. Laser Technology, 2010, 34(6):855-860 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201006036
    [23]
    HONG G Y. Fundamental and application of rare earth luminescent materials [M]. Beijing: Science Press, 2011:451(in Chinese)
    [24]
    PU W, JUDITH M, DAWES P B. Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6μm [J]. Optical Materials, 2002, 19(3):383-387. DOI: 10.1016/S0925-3467(01)00241-5
    [25]
    FRORENZO V, JOHN C B, JOHN A C. Significance of Yb3+ concentration on the up-conversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals [J].Journal of Applied Physics, 2004, 96(1):661-667. DOI: 10.1063/1.1739523
    [26]
    HOU Y B, CHEN X B, ZHANG G Y. Energy transfer in up-conversion luminescence of Pr, Yb:ZBLAN [J]. Acta Optica Sinica, 1997, 17(4):403-408 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXXB704.003.htm
    [27]
    POLLNAU M, GAMELIN D R, LUTHI S R, et al. Power dependence of up-conversion luminescence in lanthanide and transition metalion systems[J]. Physical Review, 2000, B61(5):3337-3346. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000061000005003337000001&idtype=cvips&gifs=Yes
  • Related Articles

    [1]ZHENG Yujie, ZHOU Biao, YANG Xiutao, ZHANG Jingquan, WANG Wenwu, ZHANG Wangzhi, ZHANG Hongguo, ZENG Guanggen. Research on laser-induced local spectral response of CdTe solar cell[J]. LASER TECHNOLOGY, 2023, 47(1): 87-91. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.013
    [2]ZHANG Xiaoyun, ZHANG Wei, XIA Shengqiang, MA Yao, JIN Guangyong. Study on numerical analysis of temperature field and stress field of carbon fiber reinforced polymers irradiated by high power laser[J]. LASER TECHNOLOGY, 2021, 45(5): 636-641. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.017
    [3]JIANG Dafei, FANG Xiaomin, LIAO Dongjin. Optimization of thin film solar cells with double-grating structure[J]. LASER TECHNOLOGY, 2019, 43(6): 850-854. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.022
    [4]SUN Hao, XU Jianming, ZHANG Hongchao, YANG Huan, LU Jian. Simulation of three-junction GaAs solar cell temperature field by continuous wave laser irradiation[J]. LASER TECHNOLOGY, 2018, 42(2): 239-244. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.019
    [5]LI Beibei, LI Xiaojiang. Numerical simulation of photovoltaic cell temperature field of laser power beaming[J]. LASER TECHNOLOGY, 2017, 41(4): 537-544. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.016
    [6]YANG Huan, LU Jian, ZHOU Dayong, JIA Wei, LI Guangji, ZHOU Guanglong, ZHANG Hongchao. Experimental study about effect of 1070nm CW laser irradiation on three-junction GaAs solar cells[J]. LASER TECHNOLOGY, 2017, 41(3): 318-321. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.003
    [7]DAI Bao-jiang, CHEN Feng, ZHANG Dong-shi, DU Guang-qing, MENG Xiang-wei. 飞秒激光制备波导型光合波器的数值模拟[J]. LASER TECHNOLOGY, 2012, 36(2): 251-254,264. DOI: 10.3969/j.issn.1001-3806.2012.02.029
    [8]QIU Dong-dong, WANG Rui, CHENG Xiang-ai, SUN Yong-jiang. Wave band effect of solar cells under irradiation of CW laser[J]. LASER TECHNOLOGY, 2011, 35(5): 632-635,683. DOI: 10.3969/j.issn.1001-3806.2011.05.016
    [9]LIU Yuan, LI Zheng-jia, WU Qi-bin. Research of technical parameters of Nd∶YAG laser scribing silicon film solar cell[J]. LASER TECHNOLOGY, 2006, 30(3): 248-251.
    [10]Li Minghai, Liu Aiguo, Song Yaozu. A numerical simulation for temperature and thermal stress distribution in Nd:YAG amplifiers[J]. LASER TECHNOLOGY, 2002, 26(2): 86-89.

Catalog

    Article views (3) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return