Advanced Search
YUE Jianbao, LI Bo, WANG Hailin, WANG Zhiyong, LI Jiexiong. Study on heat transfer enhancement of fin-and-tube heat exchangers in fast-axial-flow CO2 lasers[J]. LASER TECHNOLOGY, 2017, 41(5): 626-631. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.002
Citation: YUE Jianbao, LI Bo, WANG Hailin, WANG Zhiyong, LI Jiexiong. Study on heat transfer enhancement of fin-and-tube heat exchangers in fast-axial-flow CO2 lasers[J]. LASER TECHNOLOGY, 2017, 41(5): 626-631. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.002

Study on heat transfer enhancement of fin-and-tube heat exchangers in fast-axial-flow CO2 lasers

More Information
  • Received Date: December 14, 2016
  • Revised Date: February 20, 2017
  • Published Date: September 24, 2017
  • In order to solve the problem of high pressure loss and low heat transfer efficiency of fin-and-tube heat exchangers in a high power axial flow fast CO2 laser in the thick plate cutting field, computational fluid dynamics software ANSYS was used to analyze the heat transfer characteristics of 3 kinds of vortex generators. The shape, length, height and angle of trapezoidal winglet vortex generator with better heat transfer performance were optimized. The reliability of the numerical simulation data was verified through an open loop wind tunnel experimental platform. The results show that the optimum heat transfer performance is gotten with trapezoidal winglet vortex generator of 11mm length, 2.6mm height and 30° angle of attack which is gradually reduced. Compared with the generator without installing vortex, the heat transfer performance of trapezoidal winglet vortex generator Nu is increased by 8%~22%, and the friction factor is increased by 16%~27%, in Reynolds number of 600~1600. Test results of CP4000 series axial fast flow CO2 laser show that the stable output power of 8h is 4216W, 5.4% higher than the rated output power. The study improves the plate cutting capacity of CP4000 series lasers.
  • [1]
    TANG X H. High power transverse flow CO2 laser and its applications[M]. Wuhan:Huazhong University of Science and Technology Press, 2008:69-75(in Chinese).
    [2]
    TORII K, KWAK K M, NISHINO K. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2002, 45(18):3795-3801. DOI: 10.1016/S0017-9310(02)00080-7
    [3]
    KWAK K M, TORII K, NISHINO K. Simultaneous heat transfer enhancement and pressure loss Reduction for finned-tube bundles with the first or two transverse rows of built-in winglets[J]. Experimental Thermal and fluid Science, 2005, 29(5):625-632. DOI: 10.1016/j.expthermflusci.2004.08.005
    [4]
    WU J M, TAO W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A:Verification of field synergy principle[J]. International Journal of Heat and Mass Transfer, 2008, 51(5):1179-1191. http://www.sciencedirect.com/science/article/pii/S0017931007002517
    [5]
    WU J M, TAO W Q. Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator. Part B:Parametric study of major influence factors[J]. International Journal of Heat and Mass Transfer, 2008, 51(13):3683-3692. http://www.sciencedirect.com/science/article/pii/S0017931007002517
    [6]
    JOARDAR A, JACOBI A M. Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers[J]. International Journal of Refrigeration, 2008, 31(1):87-97. DOI: 10.1016/j.ijrefrig.2007.04.011
    [7]
    SU Sh C, LI G C, CHEN M H, et al. Flow and heat transfer analysis of fin-and-tube heat exchangers with side-mounted trapezium winglets[J].Proceedings of the CSEE, 2012, 32(35):87-91(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201235013
    [8]
    LEU J S, WU Y H, JANG J Y. Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators[J]. International Journal of Heat and Mass Transfer, 2004, 47(19):4327-4338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64f612f255bbea63a49857ae93a53946
    [9]
    TIAN L, HE Y, TAO Y, et al. A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in stagge red and in-line arrangements[J]. International Journal of Thermal Sciences, 2009, 48(9):1765-1776. DOI: 10.1016/j.ijthermalsci.2009.02.007
    [10]
    CHU P, HE Y L, LEI Y G, et al. Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators[J]. Applied Thermal Engineering, 2009, 29(5):859-876. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a07c82a4c9eaa2dd121b3a4b12bcbc8c
    [11]
    LI L, DU X, ZHANG Y, et al. Numerical simulation on flow and heat transfer of fin-and-tube heat exchanger with longitudinal vortex generators[J]. International Journal of Thermal Sciences, 2015, 92:85-96. DOI: 10.1016/j.ijthermalsci.2015.01.030
    [12]
    ZHOU G B, YANG L Sh. Influence of different vortex generators on heat transfer in direct air-cooled condensers[J]. Proceedings of the CSEE, 2012, 32(5):1-7(in Chinese). http://www.cqvip.com/QK/90021X/201205/40781037.html
    [13]
    YE Q L, ZHOU G B, CHENG J M, et al. Influence of different vortex generators on heat transfer enhancement and pressure drop characteristics in a rectangular channel[J]. Proceedings of the CSEE, 2010, 30(11):86-91(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001282693
    [14]
    ZHOU G B, YE Q L. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators[J]. Applied Thermal Engineering, 2012, 37(5):241-248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=18685f6914c7b747235f4190548d1547
    [15]
    LU G, ZHOU G. Numerical simulation on performances of plane and curved winglet-Pair vortex generators in a rectangular channel and field synergy analysis[J]. International Journal of Thermal Sciences, 2016, 109:323-333. DOI: 10.1016/j.ijthermalsci.2016.06.024
    [16]
    LU G, ZHOU G. Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes[J]. International Journal of Heat and Mass Transfer, 2016, 102:679-690. DOI: 10.1016/j.ijheatmasstransfer.2016.06.063
    [17]
    ZHOU G, FENG Z. Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes[J]. International Journal of Thermal Sciences, 2014, 78:26-35. DOI: 10.1016/j.ijthermalsci.2013.11.010
    [18]
    WANG W J, WANG Y Q, ZHAO H, et al. The application of computational fluid dynamic method in designing heat exchanger of CO2 laser[J]. Laser Technology, 2014, 38(6):729-732(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201406002.htm
    [19]
    WANG W J, BAO Y, WANG Y Q. Numerical investigation of a finned-tube heat exchanger with novel longitudinal vortex generators[J]. Applied Thermal Engineering, 2015, 86:27-34. DOI: 10.1016/j.applthermaleng.2015.04.041

Catalog

    Article views (3) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return