Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 41 Issue 4
May  2017
Article Contents
Turn off MathJax

Citation:

Investigation on slow light in composite-structure photonic crystal coupled-cavity waveguide

  • Received Date: 2016-09-21
    Accepted Date: 2016-11-28
  • In order to design a photonic crystal waveguide which can propagate slow light with wide band and low dispersion, on the basis of photonic crystal structure of triangular lattice dielectric cylinder, the periodic arrangement was carried out using circular scatterers and elliptic scatterers. Plane wave expansion method was used to simulate the designed coupled cavity waveguide. The results show that the maximum group velocity of guided mode decreases from 0.035c to 0.01c by changing long axis Ra of oval scatterers in defect line. The group velocity can be further decreased when short axis Rb in defect line is changed. Further study shows that by changing area ratio of two scatterers of the first row around the microcavity, the maximum group velocity is reduced to 0.0065c, and low dispersion slow light with wavelength range of 3.25nm was gotten. When the designed coupled cavity was used in optical buffer, cache time of 76.82ps and the maximum ache capacity of 15.56bit can be achieved. The research has reference value in the design and application of novel devices based on photonic crystal waveguides.
  • 加载中
  • [1]

    SHAIK E H, RANGASWAMY N. Improved design of all-optical photonic crystal logic gates using T-shaped waveguide[J]. Optical & Quantum Electronics, 2016, 48(1):1-15.
    [2]

    HOSSEINI A, KWONG D, SUBBARAMAN H, et al. Low dispersion slow light in silicon-on-insulator photonic crystal waveguide[J]. Photonic & Phononic Crystal Materials & Devices, 2010, 7609(1):1114-1125.
    [3]

    LI W. Study on band gap and waveguide coupling characteristicsof air pattern photonic crystal[J]. Laser Technology, 2012, 36(2): 228-229(in Chinese).
    [4]

    PU S, WANG H, WANG N, et al. Extremely large bandwidth and ultralow-dispersion slow light in photonic crystal waveguides with magnetically controllability[J]. Applied Physics, 2013, B112(2):223-229.
    [5]

    LIU Y F, LIU B, CHEN J, et al. Study on filtering characteristics based on tooth-shaped photonic crystal waveguide[J]. Laser Technology, 2016, 40(2):237-240(in Chinese).
    [6]

    WANG X W, ZHANG W, HAN J T, et al. Investigation of structure design and transmission characteristic of GeSbSe photonic crystal waveguides[J]. Chinese Journal of Lasers, 2015, 42(1):0105001(in Chinese). doi: 10.3788/CJL
    [7]

    TONG K, ZHANG Zh G, LU J R, et al. Hybrid plasmonic photonic crystal nano microcavity[J]. Chinese Journal of Lasers, 2014, 41(9):0905009(in Chinese). doi: 10.3788/CJL
    [8]

    ZHANG W, WANG Zh Y, WANG W Ch, et al. Investigation on wideband slow light based on photonic-crystal coupled waveguides[J]. Acta Optica Sinica, 2012, 32(2):0213001(in Chinese). doi: 10.3788/AOS
    [9]

    ZHANG Zh X, XIAO J. Analysis of energy band structure of 1-D photonic crystal[J]. Laser Technology, 2015, 39(4): 525-527(in Chinese).
    [10]

    LIU W K, DENG J Sh, DONG X W. Investigation on slow light in photonic crystal with air ring[J]. Chinese Journal of Lasers, 2016, 43(1):0106004(in Chinese). doi: 10.3788/CJL
    [11]

    GUO Y, ZHANG Zh Y, QIAO J L, et al. Slow light effect of photonic crystal waveguides with silicon wafer by using crescent scatterers[J]. Journal of Qingdao University(Natural Science Edition), 2015, 28(1):35-39(in Chinese).
    [12]

    WAN Y, HAN W J, JIA M H, et al. Slow light effect of coupled waveguide with eye-shaped scatterers[J]. Acta Optica Sinica, 2015, 35(3):144-152(in Chinese).
    [13]

    WAN Y, FU K, YUN M J, et al. Slow light effect with low group velocity and low dispersion by adjusting parameters of cylinder-segment scatterers[J]. Chinese Journal of Lasers, 2013, 40(1):0106002(in Chinese).
    [14]

    MAO Q M, LI Ch H, XIA Zh. Investigation on slow light properties in rectangular holes photonic crystal waveguide[J]. Acta Photonica Sinica, 2016, 45(2):159-164(in Chinese).
    [15]

    ZHANG M, PAN W, YAN L Sh, et al. Research of slow light in the two-dimensional triangular rods photenic crystal line defected waveguide[J]. Chinese Journal of Lasers, 2009, 36(4):857-861(in Chinese). doi: 10.3788/JCL
    [16]

    LI Ch H, WAN Y, MAO Q M. Research of slow light performances of photonic crystal couple resonator optical waveguides formed by oval rods cavities[J]. Acta Optica Sinica, 2015, 44(4): 0416002(in Chinese).
    [17]

    ZHAO Y, ZHANG Y N, WANG Q, et al. Review on the optimization methods of slow light in photonic crystal waveguide[J]. IEEE Transactions on Nanotechnology, 2015, 14(3):407-426. doi: 10.1109/TNANO.2015.2394410
    [18]

    ZHANG Ch X, XU X Sh, XI W, et al. Research on the slow light characteristics of a novel low-dispersion photonic-crystal coupled-cavity waveguide[J]. Laser & Optoelectronics Progress, 2013, 50(5): 051301(in Chinese).
    [19]

    DONG X W, QUAN W, LIU W K. Investigation on slow light in photonic crystal coupled-cavity waveguide[J]. Acta Photonica Sinica, 2015, 44(2): 181-184(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5) / Tables(2)

Article views(3774) PDF downloads(315) Cited by()

Proportional views

Investigation on slow light in composite-structure photonic crystal coupled-cavity waveguide

  • 1. College of Computer Science, North China University of Technology, Beijing 100144, China
  • 2. College of Electronic and Information Engineering, North China University of Technolgy, Beijing 100144, China

Abstract: In order to design a photonic crystal waveguide which can propagate slow light with wide band and low dispersion, on the basis of photonic crystal structure of triangular lattice dielectric cylinder, the periodic arrangement was carried out using circular scatterers and elliptic scatterers. Plane wave expansion method was used to simulate the designed coupled cavity waveguide. The results show that the maximum group velocity of guided mode decreases from 0.035c to 0.01c by changing long axis Ra of oval scatterers in defect line. The group velocity can be further decreased when short axis Rb in defect line is changed. Further study shows that by changing area ratio of two scatterers of the first row around the microcavity, the maximum group velocity is reduced to 0.0065c, and low dispersion slow light with wavelength range of 3.25nm was gotten. When the designed coupled cavity was used in optical buffer, cache time of 76.82ps and the maximum ache capacity of 15.56bit can be achieved. The research has reference value in the design and application of novel devices based on photonic crystal waveguides.

引言
  • 随着全光通信网络的发展,光子器件与光子器件的集成日益成为研究热点[1]。对光缓存器、光信号处理、光传感器等光学器件的要求越来越高,光缓存是实现这些器件集成的关键技术。而光子晶体慢光结构具有体积小、常温运行、设计灵活等优点[2-4]。光子晶体是由不同介电常数的物质周期性排列而形成的微小结构[5-6],其元胞周期同光波长处于同一数量级[7]。通过结构的设计很容易实现对色散曲线和光子态密度的调制,例如在2维光子晶体中移除一行介质柱,形成线缺陷光波导结构,可在禁带中出现具有较小群速度的平坦导模,从而实现慢光传输[8-9]

    传统的光子晶体慢光的研究主要以圆型介质柱散射元光子晶体为对象。近年来,新型散射元光子晶体逐渐成为研究热点,例如,作者曾分析了空气环型散射元光子晶体慢光,利用非对称结构获得了宽带低色散慢光[10]。GUO等人研究了月牙形散射元光子晶体,实现了高群折射率和低色散的慢光效应[11]。WAN等人发现圆形介质柱椭圆化有利于优化慢光特性[12-13]等。而对多种散射元复合排列的光子晶体慢光的分析较少,MAO等人利用矩形孔和椭圆孔构成矩形孔光子晶体波导结构,获得了带宽较宽、色散较小的慢光[14]。作者设计了新型混合结构的光子晶体耦合腔波导结构,结合平面波展开法分析了耦合腔波导的能带结构,通过改变缺陷行以及微腔附近第1排散射元的参量,分析了耦合腔波导的慢光特性。

1.   结构设计和分析
  • 复合结构光子晶体结构设计如图 1所示。以三角晶格圆形介质柱光子晶体结构为基础,将部分圆形介质柱椭圆化,即圆形介质柱和椭圆形介质柱以1:3的比例间隔排列。介质柱折射率n=3.46(近似为半导体Si或InP材料在近红外波段的折射率),空气作为背景,折射率取1,晶格常量为a,圆形介质柱半径r=0.20a,椭圆介质柱长轴Ra=0.28a,短轴Rb=0.20a,工作波长分布在1550nm附近。去除某一行的介质柱形成线缺陷波导后,在原先椭圆介质柱的位置添加相同材质的长轴0.31a、短轴为0.20a的椭圆介质柱,构成了如图 1所示的光子晶体耦合腔波导结构。

    Figure 1.  Structure of photonic crystal coupled cavity waveguide

    能带分布是光子晶体波导慢光特性的重要指标,在实际通信中,TM模为常用的通信模式,研究TM模的能带分布对工程实践具有一定的指导意义。应用脉宽编码器求得复合结构光子晶体耦合腔波导的TM模能带分布,如图 2a所示。该结构的禁带范围是0.3382~0.4129(f=2a/λ, 为归一化值),禁带中存在一个平坦导模。耦合腔中传播的电磁波以bloch波的形式传播,利用色散关系vg=dω/dk=c/ng,求得导模的群速度vg(其中,ω为角频率,k为波数, k=2π/ac为真空中的光速,ng为群折射率), 如图 2b所示。群速度vg在中心频率0.3765附近取得最大值0.035c,而在带边附近时,导模的群速度迅速下降。该导模实现了宽带低群速度慢光。

    Figure 2.  a—TM mode band diagram of structure in Fig. 1 b—group velocity of guided mode in Fig. 2a

  • 在线缺陷波导中,通过改变缺陷行介质柱的结构参量可以调节群速度的大小。参考文献[15]中在三角晶格的基础上通过增大缺陷行介质柱的半径,使得导模位置向低频移动,并且有效降低了导模群速度。下面在图 1的基础上,分析改变缺陷行剩余缺陷柱参量对慢光特性的影响。

    首先,保持缺陷行介质柱短轴Rb=0.20a不变,分析长轴Ra的数值变化对慢光特性的影响, 如图 3a所示。当椭圆长轴Ra从0.35a增大至0.43a时,导模位置向低频移动,并且趋势变得平缓; 当Ra从0.43a继续增大时,导模位置继续向低频移动,但是曲线变得越来越陡峭。实验分析发现,在Ra=0.43a时,获得的慢光导模变化平稳,导模的平坦度较高。将图 3aRa取不同值时的导模利用色散关系求得导模群速度曲线,如图 3b所示。在Ra增大的过程中,导模中心频率的位置向低频移动,其对应的群速度值先减小后增大。可以看出,色散曲线越是平坦,其对应的群速度越小,这点与图 3a表现的色散特性一致。分析得到,当Ra=0.43a时,导模的群速度达到极小值。

    Figure 3.  a—relationship of frequency and wave number with different Ra b—relationship of group velocity and frequency with different Ra

    其次,取缺陷行散射元长轴Ra=0.43a,分析短轴Rb对导模慢光特性的影响。它的群速度特性曲线随Rb的变化如图 4所示。在Rb从0.15a增大到0.22a的过程中,导模的中心频率向低频移动,群速度先减小后增大,当Rb为0.17a或0.18a时,群速度大小几乎相同,都可以看成最小值。

    Figure 4.  Relationship of group velocity and frequency with different Rb

    由上面的分析可以看出,在该复合结构设计中,在去除一行介质柱形成线缺陷波导后,通过调节添加的椭圆缺陷柱的结构参量可以有效地降低导模群速度,并且在椭圆缺陷柱长短轴值增大的同时,导模的中心频率向着低频方向移动,这一规律与参考文献[15]中的结论类似。但是由于结构和介质柱类型不同,使得导波模对结构参量的变化规律有所不同,例如上述结构中增大结构参量时群速度并非持续减小,而是在减小的过程中出现了拐点。

  • 本节中将分析耦合腔附近散射元的结构参量对慢光性能的影响。参考文献[16]中通过将围成耦合腔的圆形散射元椭圆化,进一步降低了群速度。类似的,取缺陷行Ra=0.43aRb=0.18a,定义图 1中虚线框内椭圆介质柱和圆介质柱的面积分别为SeSs,对椭圆介质柱进行整体放大或缩小。Se/Ss的初始比值为1.40,使得Se/Ss的取值从1.46开始,以0.03的间隔减小到1.28,对应的导模曲线如图 5a所示。当Se/Ss的值减小时,导模的中心频率位置向高频方向移动,群速度不断降低,同时导模的有效带宽随之减小。Se/Ss值的变化进一步破坏了光子晶体的完整性,使得导模边缘存在群速度色散效应(group velocity dispersion, GVD)。当群速度色散较大时,光波在耦合腔中传输会产生明显的脉冲展宽现象,可用2阶色散系数β2=d2k/d2ω=dng/dω·(1/c)来描述群速度的色散程度。当群速度色散值在-106ps2/km~106ps2/km之间时,可以满足在微小结构中正常传输的要求[17]Se/Ss的值对应的GVD随归一化频率变化的关系如图 5b所示。当Se/Ss取以上值时,曲线的平坦区域均满足正常传输条件,与此同时,随着Se/Ss值的减小,曲线平坦部分所占的带宽逐渐变窄。

    Figure 5.  a—relationship of group velocity and frequency with different Se/Ss b—relationship of GVD and frequency with different Se/Ss

2.   混合结构光子晶体耦合腔性能分析
  • 第1.3节中通过改变耦合腔附近第1排介质柱的比例,虽然有效地降低了导模群速度,但是却增大了群速度色散,使得符合传输条件的有效带宽不断减小。为了比较复合结构耦合腔波导在不同波长范围内的低色散慢光特性,可以引入归一化延时带宽积(normalized delay banduidth product, NDBP)NDBP作为衡量指标。定义慢光的平均群折射率$ {\tilde n_{\rm{g}}} = \sum {n_{{\rm{i, g}}}}({\lambda _{\rm{i}}})/N $和相应的波长带宽为Δλ=λmax-λmin,群折射率平坦率$ \sigma = ({n_{{\rm{g, max}}}} - {n_{{\rm{g, min}}}})/(2{\tilde n_g})$,规定群折射率平坦率σ≤10%,即群折射率ng在(1±10%)ñg范围内为低色散的慢光传输区域。NDBP可以表示为NDBP=ngΔλ/λ0λ0为中心波长。

    表 1可以看出,当保持缺陷行介质柱短轴不变时,长轴取0.45a和0.43a可以得到较大的NDBP,比Ra=0.48a时的NDBP提高约19.69%,长轴为0.43a时,平坦导模的群折射率最大,同时NDBP也达到最大值0.3484。当缺陷行长轴Ra取0.43a、调整短轴Rb值为0.17a和0.18a时,可进一步增大群折射率。本文中取Rb=0.18a,相应的低色散区的波长范围为4.40nm。此时减小Se/Ss的值,虽然可以得到更高的群折射率,但是导模的带宽值也相应减小,这与1.3节中的结果相符合。当Se/Ss从1.40减小到1.34时,NDBP的值基本保持不变,而当Se/Ss从1.34减小到1.28时,NDBP值降低,导模的群速度和色散特性有所下降。可以得出:当Se/Ss=1.34时,导模的群折射率取得最大值166.00,此时的低色散波长范围为3.25nm,延迟带宽积NDBP=0.3480,该光子晶体耦合腔可以传输宽带低色散慢光。

    parameters in defeat line Se/Ss λ0/nm ng Δλ/nm NDBP
    Ra Rb
    0.47a 1568.42 81.44 5.60 0.2910
    0.45a 1563.89 99.09 5.50 0.3482
    0.43a 0.20a 1560.71 105.97 5.13 0.3484
    0.41a 1558.18 103.06 5.25 0.3476
    0.39a 1.40 1555.72 92.79 5.81 0.3470
    0.19a 1556.94 116.04 4.67 0.3480
    0.18a 1553.63 122.69 4.40 0.3475
    0.17a 1555.05 124.12 4.33 0.3469
    0.16a 1547.39 118.48 4.51 0.3460
    0.43a 1.40 1553.63 122.69 4.40 0.3475
    1.37 1552.92 142.44 3.79 0.3479
    0.18a 1.34 1552.30 166.00 3.25 0.3480
    1.31 1551.77 191.34 2.36 0.2917
    1.28 1551.29 223.80 2.02 0.2918

    Table 1.  Slow light property with the change of parameters

    可以用缓存时间Ts和存储容量C描述该耦合腔的缓存特性。定义缓存长度L=60ll为单个耦合腔的宽度,缓存时间$ {T_{\rm{s}}} = \frac{L}{{{v_{\rm{g}}}}} = L{n_{\rm{g}}} $,存储容量$ C = \frac{L}{{{v_{\rm{g}}}}} \times \frac{{\Delta {\omega _0}}}{{4{\rm{ \mathsf{ π} }}}} = \frac{L}{{c/{n_{\rm{g}}}}}\frac{{c\Delta \omega }}{{2a}} = \frac{L}{{2a}}{n_{\rm{g}}}\Delta \omega $,其中Δω0为波导中缺陷模式的带宽,Δω为导模的归一化带宽,耦合腔的品质因子Q=ω0ω=λ0λSe/Ss从1.40减小到1.28的过程中,对应的光缓存参量如表 2所示。随着Se/Ss减小,耦合腔的缓存时间和品质因子有着明显的增大,当Se/Ss从1.40变化到1.34时,存储容量增大了0.04bit,当Se/Ss从1.34变化到1.31时,存储容量减小1.81bit。由实验分析发现,当Se/Ss=1.34时,耦合腔波导具有良好的慢光缓存能力,此时的存储容量达到最大值15.56bit,品质因子为452.75,缓存时间达到了76.82ps。

    Ra, Rb in defeat line Se/Ss vg, max/c Q C/bit Ts/ps
    Ra=0.43aRb=0.18a 1.40 0.0088 353.01 15.52 56.78
    1.37 0.0076 409.46 15.55 65.92
    1.34 0.0065 476.92 15.56 76.82
    1.31 0.0056 655.90 13.75 88.56
    1.28 0.0047 766.92 13.06 103.57

    Table 2.  Buffer property with the change of Se/Ss

    参考文献[18]中通过平移耦合腔波导两侧散射元优化波导慢光特性,得到最大群折射率为142.6,带宽为2.16nm,归一化延时带宽积为0.1956,本文中实现的群折射率为166.00,比之增大了16.4%,导模有效带宽为3.25nm,增大了50.5%,归一化延迟带宽积为0.3480,改善了77.9%。参考文献[19]中通过改变耦合腔之间介质柱数目与改变第1排介质柱平移量相结合的方法,实现了群速度最大值为0.03c的慢光,本文中耦合腔波导结构得到的群速度最大值为0.0065c,比之降低了一个数量级。

3.   结论
  • 根据2维三角晶格光子晶体耦合腔波导的慢光原理,设计了由椭圆散射元和圆形散射元周期性排列构成的光子晶体耦合腔波导,分析了结构参量对慢光特性的影响。结果表明,调整椭圆缺陷柱长轴和短轴的大小,有利于降低导模的群速度。改变微腔周围第1排两种散射元的面积比,通过取合适Se/Ss值,可以进一步降低群速度,获得宽带低色散的慢光,最后分析了该耦合腔的缓存能力。

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return