HTML
-
从图 6可以明显看出,在实验条件完全相同的情况下,RPE-OSH系统所重建的图像(见图 6b)比OSH的(见图 6a)主观感受要好。虽然由于实验设备等因素的局限,两幅重建图像的质量都不完美,但相比较而言,RPE-OSH系统重建的图像更为清晰一些。可以看到, 图 6b中的图像边缘信息保留得更加完整,图 6a中的图像则由于丢失了高频信息而更为模糊,且其背景噪声主要集中在图像附近, 也就是说,RPE-OSH系统保留了高频细节信息,重建图像具有更高的分辨率。
-
为了更客观地比较两种方法下重建图像的质量,计算了两幅图像相对于原始图像的信噪比和相关系数。信噪比的计算公式为:
式中, Es和En分别为重建图像的信号能量及噪声能量; f (i, j)和n (i, j)均为M×N的矩阵; c′为最佳匹配系数,在实际计算中,c′可以通过计算原图像与重建图像的最小误差的平方和来求得。
相关系数的计算公式为:
式中, cov为协方差函数,F和G表示的是原图像和重建图像的频谱,D(F)和D(G)分别为F和G的方差,F和G表示的是F和G的均值,ρF, G的取值范围为[-1, 1]。
表 1是图 6中两种方法所重建的聚焦层图像和原图像之间信噪比和相关系数计算的结果。由表 1可知,RPE-OSH系统重建的图像具有更高的信噪比,而且重建图像和原图像之间有着更高的相关系数,这表明基于RPE-OSH系统重建的图像更加接近实际物体图像,保留了更多的细节信息。
-
图 7为泰姬陵原图像、OSH及RPE-OSH重建图像的频谱情况。图像的频谱表征了图像含有的高低频率成分,因此重建图像的效果也可以用重建后的频谱与原图像频谱的接近程度来表示。显然,频谱与原图像越接近,说明重建的结果越接近真实还原。为了方便对比,将频谱的振幅和频率范围都做了归一化处理。从图中可以看出,在较低频区域,OSH和RPE-OSH重建图像的频谱几乎完全重合,说明它们对图像轮廓的还原能力相当;而在较高频区域,OSH重建图像的频谱与原图像频谱差异性明显,但RPE-OSH的频谱则与原图像频谱保持较好的变化趋势的一致性,这说明RPE-OSH重建的图像在图像细节还原上的失真没有OSH的那么严重。