首先给出固体平靶和背景等离子体相结合的联合质子加速方案的简单理论模型。为了简单起见, 将加速过程分两个阶段。第一阶段是钻孔阶段[9-12], 激光脉冲主要与固体平靶相互作用, 这时激光脉冲有质动力将靶内的电子压缩到靶后的薄层内, 从而产生一个空间电荷分离场, 靶内的离子由电荷分离场加速并进入到压缩电子层内, 形成一个电子层和离子层一起运动的双层结构。第二阶段是光帆阶段[9-12], 由于固体平靶足够薄, 钻孔阶段很快就结束, 这时固体靶前沿的双层结构开始脱离固体靶的其余部分并向前运动进入到背景等离子体里面。由于双层结构继续受到激光有质动力的推动, 因此整个双层在背景等离子体中传播, 在背景等离子体中呈现为运动电场, 此电场在背景等离子体中运动的初速度为钻孔过程的末速度。最后, 背景等离子体中的质子被这一运动电场捕获并加速到高能量。整个过程的物理图像如下:首先用活塞运动模型给出钻孔速度, 与钻孔速度的表达式和守恒定律联合起来可得到运动电场的表达式, 用钻孔速度和运动电场的表达式可以得到被加速质子速度和能量的表达式。
现考虑一束圆偏振激光脉冲沿x方向垂直入射到固体平靶上, 固体靶厚度为[9]:
式中, ne为固体靶初始电子密度; λ为激光波长; ncr=meω0/(4πe2), 为临界等离子体密度, 其中ω0为激光频率, me为电子质量, -e为电子电荷量; a0=eA/(mec2), a0为归一化的激光振幅, c为真空中的光速, A为激光矢势。
正如前面所讨论的那样, 固体平靶在激光辐射压力作用下的运动可以通过钻孔和光帆模型来描述[12-13]。理想情况下, 由电子层和离子层构成的双层结构可以看成随激光一起运动的相对论等离子体镜, 其不断地反射激光并在激光的光压作用下运动在等离子体中。在以钻孔速度v=cβ运动在运动坐标系上, 活塞运动方程为:
式中, I是在实验室坐标系中的激光强度, γ=1/$\sqrt {1 - {\mathit{\boldsymbol{\beta }}^2}} $是相对论因子, β=v/c是归一化的钻孔速度, mi是离子质量。利用关系I=cEl2/(4π)和a0=Ele/(meω0c), 把(2)式可改写为:
式中, El为激光的电场。
运动电场的振幅可用能量守恒定律来得到, 由激光辐射压力和静电场能量流的关系可以得到最大电场:
式中, Ex,m是运动坐标系中的电场强度。由于纵向方向的电场是Lorentz不变量, 因此Ex,m=Ex, 其中Ex是电场在实验室坐标系中的电场强度。通过利用关系式(1-β)/(1+β)≈1/(4γ2), 由(4)式有:
从(5)式可以看出, 在本方案中, 电场按∝1/(2γ)变化, 而在没有背景等离子体情况下的简单辐射压加速中, 电场按∝ 1/(4γ2)变化[13]。
双层结构在背景等离子体中传播过程中, 在实验室参考系中静止的质子将在随激光活塞运动的参考系中以-β的速度朝激光活塞运动(双层), 并完全弹性地反射回去并被这一运动电场捕获和加速。因此被捕获质子的运动方程为:
式中, βp=vp/c是归一化质子速度, γp=1/$\sqrt {1 - {\mathit{\boldsymbol{\beta }}_{\rm{p}}}^2} $是质子的相对论因子。上式中的β可以用(3)式解出。最后被加速质子能量可以写为:
作者用(2)式、(5)式和(7)式可以描述本方案中质子加速的动力学过程。另外, 对这些方程进行了数值求解, 所得到的结果如图 1所示。从图 1a(实线)可以看出, 活塞运动(双层)速度很快就达到相对论速度, 然而质子速度为了达到相对论速度需要更长的时间(虚线)。这是因为背景等离子体中质子先被激光活塞(双层)反射回去, 然后被运动电场捕获并加速一段时间以后才能达到相对论速度, 如图 1a(实线)所示。图 1b中给出了质子能量随时间变化规律。