[1]
|
EBBESEN T W, lEZEC H J, GHAEMI H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668):667-669. doi: 10.1038/35570 |
[2]
|
XIAO G L, YAO X, HUANG Y P, et al. Transmission enhancement properties of double-layered metallic hole arrays[J].Chinese Optics Letters, 2008, 6(10):791-793. doi: 10.3788/COL |
[3]
|
BARNESS W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J].Nature, 2003, 424(6950):824-830. doi: 10.1038/nature01937 |
[4]
|
RUAN Zh Ch, QIU M. Enhanced transmission through periodic arrays of subwavelength holes:the role of localized waveguide resonances[J].Physical Review Letters, 2006, 96(23):233901. doi: 10.1103/PhysRevLett.96.233901 |
[5]
|
XIN Q Q, JU L, RONG R F, et al. Simulation model of optical transmission of sub-wavelength holes on metal films[J]. Journal of Fudan University(Natural Science Edition), 2010, 49(6):757-763(in Chinese). |
[6]
|
WAN L Y, BAN W H, LU Zh Y. Design of optical hybrids based on a subwavelenght polarization grating[J].Laser Technology, 2011, 35(3):356-359(in Chinese). |
[7]
|
XIA Y, XIE H, SUN L P, et al. Research of tunable optical filters with ultra-narrow bandwidth[J].Laser Technology, 2013, 37(4):493-497(in Chinese). |
[8]
|
ZHEN H L. Polarization filters based on high birefringence photonic crystal fiber filled with Au[J].Laser Technology, 2016, 40(1):1-4(in Chinese). |
[9]
|
LIU Y F, LIU B, CHEN J, et al. Study on filtering characteristics based on tooth-shaped photonic crystal waveguide[J].Laser Technology, 2016, 40(2):237-240(in Chinese). |
[10]
|
MARTIN-MORENO L, GARCIA-VIDAL F J, PENDRY J B, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J].Physical Review Letters, 2001, 86(6):1114-1117. doi: 10.1103/PhysRevLett.86.1114 |
[11]
|
YE Y H, WANG Z B, YAN D, et al. Role of shape in middle-infrared transmission enhancement through periodically perforated me-tal films[J]. Optics Letters, 2007, 32(21):3140-3142. doi: 10.1364/OL.32.003140 |
[12]
|
CHEN Y G, WANG Y H, ZHANG Y, et al. Numerical investigation of the transmission enhancement through sub-wavelength hole array[J]. Optics Communications, 2007, 274(1):236-240. doi: 10.1016/j.optcom.2007.02.001 |
[13]
|
TAFLOVE A. Coferemputational electrodynamics:the finite-diffference time-domain method[M]. Boston, USA:Artech House, 1995:82-83. |
[14]
|
GRAY S K, KUPKA T. Propagation of light in metallic nanowire arrays:finite-difference time-domain studies of silver cylinders[J].Physical Review, 2003, B68(4):454-456. |
[15]
|
ZHANG J L, HUANG M, HU B J, et al. Simulation on light extraction efficiency of subwavelength hole array with FDTD method[J].Journal of Yunnan University(Natural Science Edition), 2008, 30(5):472-476(in Chinese). |
[16]
|
RASHIDI A. Scattering performance of plasmonic nanorodantennas in randomly tilted disordered and Fibonacci configuration[J].Applied Physics Letters, 2012, 101(6):062401. doi: 10.1063/1.4730997 |
[17]
|
SU J, SUN Ch, WANG X Q. A metallic dispersion model for numerical dispersion simulation[J].Journal of Optoelectroncis·Laser, 2013, 24(2):408-414(in Chinese). |
[18]
|
FAN T, ZHANG J, CHEN Y L. Simulation study on the filter of sub-wavelength metal holes arrays based on FDTD[J].Piezoelectrics and Acoustooptics, 2013, 35(5):702-710(in Chinese). |