Advanced Search
LIU Yujia, XIN Jieping, WAN Lingyu, CAI Zhuohuai. Optimization design of optical antenna with wide field-of-view high-gain subwavelength structure[J]. LASER TECHNOLOGY, 2017, 41(1): 34-39. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.008
Citation: LIU Yujia, XIN Jieping, WAN Lingyu, CAI Zhuohuai. Optimization design of optical antenna with wide field-of-view high-gain subwavelength structure[J]. LASER TECHNOLOGY, 2017, 41(1): 34-39. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.008

Optimization design of optical antenna with wide field-of-view high-gain subwavelength structure

More Information
  • Received Date: January 10, 2016
  • Revised Date: March 15, 2016
  • Published Date: January 24, 2017
  • In order to optimize the design of wide field-of-view high-gain optical antenna in free space, the finite element method was utilized to analyze the effect of different structure parameters on transmission enhancement characterization of bull's eye structure, horn-shaped structure and bowl-shaped structure respectively. The relationship between the numbers of slit and the coefficient of surface-plasmon-enhanced extraordinary transmission was obtained, and the optimal structure parameters of bowl-shaped optical antenna with subwavelength structure was gotten. The results show that for horn-shaped optical antenna, when the single silt can excite the strongest surface plasmon polaritons(SPP), the coefficient of transmission enhancement has lager value. By optimizing the structural parameters, the value of horn-shaped structure enhancement coefficient varies from 20 times to 140 times when the incident angle θ is within ±5°. The smooth enhanced gain is gotten at the incident angle in the range from ±5°to ±26°. The average value of the enhancement coefficient is 10. The performance is doubled compared with the performance of present structural parameters. Bowl-shaped structure has a good enhanced transmission character at the incident angle in the range of ±60° and the average value of the enhancement coefficient is 10 in the smooth enhanced transmission area. The wide field-of-view transmission character of the bowl-shaped is better than of the horn-shaped.
  • [1]
    BLOOM S, KOREVAAR E, SCHUSTER J, et al. Understanding the performance of free-space optics[J]. Journal of Optical Networking, 2003, 2(6):178-200. http://www.opticsinfobase.org/abstract.cfm?uri=jon-2-6-178
    [2]
    CAI L, LI G Y, XU A Sh. Wide field-of-view free-space optical receiver based on surface plasmon polaritons[J].China Communications, 2009, 6(3):53-59(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZGTO200903027.htm
    [3]
    RAMIREZ-INIGUEZ R, GREEN R J. Optical antenna design for indoor optical wireless communication systems[J]. International Journal of Communication Systems, 2005, 18(3):229-245. DOI: 10.1002/(ISSN)1099-1131
    [4]
    JEONG W, KAVEHRAD M, JIVKOVA S. Broadband infrared access with a multi-spot diffusing configuration:performance[J]. International Journal of Wireless Information Networks, 2001, 8(1):27-36. DOI: 10.1023/A:1011381528988
    [5]
    EBBESEN T W, LEZEC H J, GHAEMI H F, et al. Extraordinary optical transmission through subwavelength hole arrays[J]. Nature, 1998, 391(6668):667-669. DOI: 10.1038/35570
    [6]
    LI G Y, CAI L, XIAO F, et al. Plasmonic corrugated horn structure for optical transmission enhancement[J]. Chinese Physics Letters, 2009, 26(12):124205. DOI: 10.1088/0256-307X/26/12/124205
    [7]
    ZHANG X F, YUAN M H. Analysis of terahertz wave through a slit with parallel grooves on both sides[J]. Laser Technology, 2013, 37(4):533-536(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201304026
    [8]
    JANSSEN O T, URBACH H P, 'THOOFT G W. On the phase of plasmons excited by slits in a metal film[J]. Optics Express, 2006, 14(24):11823-11832. DOI: 10.1364/OE.14.011823
    [9]
    BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2):185-200. http://dl.acm.org/citation.cfm?id=1718399
    [10]
    RAKIC A D, DJURISIC A B, ELAZAR J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 1998, 37(22):5271-5283. DOI: 10.1364/AO.37.005271
    [11]
    JANSSEN O T, URBACH H P, 'THOOFT G W. Giant optical transmission of a subwave-length slit optimized using the magnetic field phase[J]. Physical Review Letters, 2007, 99(4):043902. DOI: 10.1103/PhysRevLett.99.043902
    [12]
    DEGIRON A, EBBESEN T W. Analysis of the transmission process through single apertures surrounded by periodic corrugations[J]. Optics Express, 2004, 12(16):3694-3700. DOI: 10.1364/OPEX.12.003694
    [13]
    MARTIN-MORENO L, GARCIA-VIDAL F J, LEZEC H J, et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Physical Review Letters, 2003, 90(90):167401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1211eaa95d9791e4c43d4dba2658508
    [14]
    GARCIA-VIDAL F J, LEZEC H J, EBBESEN T W, et al. Multiple paths to enhance optical transmission through a subwavelength slit[J]. Physical Review Letters, 2003, 90(21):213901. DOI: 10.1103/PhysRevLett.90.213901
    [15]
    YU L B, LIN D Zh, CHEN Y Ch, et al. Physical origin of directional beaming emitted from a subwavelength slit[J]. Physical Review, 2005, B71(4):041405. http://adsabs.harvard.edu/abs/2005PhRvB..71d1405Y
    [16]
    ISHI T, FUJIKATA J, OHASHI K. Large optical transmission through a single subwavelength hole associated with a sharp-apex grating[J]. Japanese Journal of Applied Physics, 2005, 44(4):L170-L172. DOI: 10.1143/JJAP.44.L170
    [17]
    LI G Y, XU A Sh. Phase shift of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave[J]. Proceedings of the SPIE, 2008, 7135:71350T. DOI: 10.1117/12.803469
    [18]
    NESCI A, DÄNDLIKER R, HERZIG H P. Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope[J]. Optics Letters, 2001, 26(4):208-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab59712869603a33ecafea91d1a00b9e
    [19]
    ZHENG Y, DU J L. Simulation of interference field of multi-beam surface plasma polaritons[J].Laser Technology, 2013, 37(1):28-31(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201301007
    [20]
    LEZEC H J, THIO T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Optics Express, 2004, 12(16):3629-3651. DOI: 10.1364/OPEX.12.003629
  • Cited by

    Periodical cited type(3)

    1. 吴穹, 高昆, 张震洲, 豆泽阳, 刘卫平, 熊吉川. 宽视场偏振调制成像的变指数正则化重构方法. 光学学报. 2020(01): 317-330 .
    2. 马宇, 张浩, 刘婷, 章海锋. 一种“风车”形单元平面反射阵列天线的设计. 南京师大学报(自然科学版). 2019(02): 81-86 .
    3. 刘宸. 基于嵌入式技术的激光物体探测器的设计. 激光杂志. 2018(03): 129-132 .

    Other cited types(0)

Catalog

    Article views (6) PDF downloads (6) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return