Citation: | LOU Yanyang, ZHENG Xianliang, ZHANG Shichao, LU Weimin, LI Hui, XIONG Daxi. Flat-top beams spatial shaping with digital micromirror device[J]. LASER TECHNOLOGY, 2016, 40(6): 916-920. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.029 |
[1] |
DENIS R S, PASSILLY N, LAROCHE M, et al. Beam-shaping longitudinal range of a binay diffractive optical element[J]. Applied Optics, 2006, 45(31):8136-8141.
|
[2] |
JIA J, ZHOU C, SUN X, et al. Superresolution laser beam shaping[J]. Applied Optics,2004,43(10):2112-2117.
|
[3] |
BOUROUIS R, AIT-AMEUR K, LADJOUZE H. Optimization of the Gaussian beam flattening using a phase-plate[J]. Journal of Modern Optics, 1997,44(7):1417-1427.
|
[4] |
CORDINGLEY J. Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers[J]. Applied Optics, 1993, 32(14):2538-2542.
|
[5] |
DONG M F, SONG X X, LI S. The designation and experiment of the DOE applied to shape the laser beam to square frame shape[J]. Laser Technology, 2005, 29(2):169-171(in Chinese).
|
[6] |
HOFFNAGLE J A, JEFFERSON C M. Design and performance of a refractive optical system that converts a Gaussian to a flattop beam[J]. Applied Optics,2000,39(30):5488-5499.
|
[7] |
HUANG Sh, DENG L M, YANG H, et al. Homogenization design of laser diode based on ZEMAX[J]. Laser Technology, 2014, 38(4):522-526(in Chinese).
|
[8] |
AUERBACH J M, KARPENKO V P. Serrated-aperture apodizers for high-energy laser systems[J]. Applied Optics,1994,33(15):3179-3183.
|
[9] |
LIANG J Y, KOHN R N, BECKER M F, et al. 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator[J]. Applied Optics, 2009, 48(10):1955-1962.
|
[10] |
HUANG D J, FAN W, LIN Z Q. Spatial laser beam shaping using digital micromirror device[J]. Chinese Journal of Lasers, 2011, 38(5):0502008(in Chinese).
|
[11] |
DU M, XING T W, YUAN J H. Application of micromirror array in beam shaping[J]. Infrared and Laser Engineering, 2014, 43(4):1210-1214(in Chinese).
|
[12] |
CHEN H. Influence of beam quality on propagation and focus of laser beam and quality of laser materials processing[D].Beijing:Beijing University of Technology,2006:28-57(in Chinese).
|
[13] |
PARTHA P M. Multispot point spread function for multiphoton fluorescence microscopy[J]. Review of Scientific Instruments, 2009, 80(9):096104.
|
[14] |
DORRER C, ZUEGEL J D. Design and analysis of binary beam shapers using error diffusion[J]. Journal of the Optical Society of America,2007,B24(24):1268-1275.
|
[15] |
FLOYD R W, STEINBERG L. An adaptive algorithm for spatial greyscale[J]. Proceeding of the Society of Information Display, 1976, 17:75-77.
|
1. |
牛昊,王永丽,姜增璇,李川川,魏志鹏,宋国峰. 基于集成氮化硅超表面VCSEL的涡旋光输出. 发光学报. 2025(02): 326-333 .
![]() | |
2. |
张莉,孙俊. 基于几何相位的高透射型太赫兹超表面设计. 现代电子技术. 2024(03): 7-11 .
![]() | |
3. |
张莉,孙俊. 基于几何相位的超表面产生宽带太赫兹涡旋波束的设计. 激光杂志. 2024(06): 44-48 .
![]() | |
4. |
梁庆宣,尹浩宇,李赵辉,段玉冰,王昕,李涤尘. 超表面异质结构的熔融沉积复合成形工艺及其电磁伪装性能研究. 机械工程学报. 2022(03): 276-283 .
![]() | |
5. |
罗文峰,李新慧,吕淑媛,贾洁. 双波长偏振控制超表面透镜的设计. 西北工业大学学报. 2022(01): 215-221 .
![]() | |
6. |
罗蒙. 一种产生涡旋光束的勾型阵列超表面结构设计. 激光与光电子学进展. 2021(01): 152-157 .
![]() | |
7. |
刘嘉伟,聂仲泉. 紧聚焦的角向偏振艾里光束产生超分辨光针. 激光技术. 2021(03): 390-395 .
![]() | |
8. |
黄晗,黄志高,曾永西. 基于锥形天线阵产生太赫兹伪贝塞尔波束. 三明学院学报. 2020(06): 56-62 .
![]() | |
9. |
茅晨曦,臧小飞,朱亦鸣. 太赫兹近场涡旋光束的干涉. 中国激光. 2019(01): 346-352 .
![]() | |
10. |
周璐,赵国忠,李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报. 2019(10): 297-304 .
![]() | |
11. |
马宇,张浩,刘婷,章海锋. 一种“风车”形单元平面反射阵列天线的设计. 南京师大学报(自然科学版). 2019(02): 81-86 .
![]() | |
12. |
章海锋. 3维函数光子晶体的特性研究. 激光技术. 2018(03): 318-324 .
![]() | |
13. |
杨靖,章海锋,张浩,刘佳轩. 基于等离子体超材料的超宽带吸波体设计. 激光与光电子学进展. 2018(09): 346-354 .
![]() | |
14. |
李文煜,章海锋,刘婷,马宇. 一种波束扫描固态等离子体超表面的设计. 激光技术. 2018(06): 822-826 .
![]() |