Advanced Search
LOU Yanyang, ZHENG Xianliang, ZHANG Shichao, LU Weimin, LI Hui, XIONG Daxi. Flat-top beams spatial shaping with digital micromirror device[J]. LASER TECHNOLOGY, 2016, 40(6): 916-920. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.029
Citation: LOU Yanyang, ZHENG Xianliang, ZHANG Shichao, LU Weimin, LI Hui, XIONG Daxi. Flat-top beams spatial shaping with digital micromirror device[J]. LASER TECHNOLOGY, 2016, 40(6): 916-920. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.029

Flat-top beams spatial shaping with digital micromirror device

More Information
  • Received Date: September 13, 2015
  • Revised Date: November 10, 2015
  • Published Date: November 24, 2016
  • In order to satisfy the applications with high quality beams and fast scanning, the formation of single flat-top and multiple flat-top beams were simulated by digital micromirror device and error diffusion method. An experimental setup with 680nm laser was built to validate the model. The beam shaping result was evaluated by using beam fill factor, light field modulation factor, root mean square error as parameters, and the energy utilization rate of beam shaping based on digital micromirror array was measured and analyzed. The results show that beam fill factors increase from 36.1% to 62.3%(single),56.7%(multiple) respectively, while light field modulation factors decrease from 73.3% to 25.6%(single),30.3%(multiple) respectively. Spatial shaping results show that the multiple flat-top beams are valuable in high quality beams and fast scanning.
  • [1]
    DENIS R S, PASSILLY N, LAROCHE M, et al. Beam-shaping longitudinal range of a binay diffractive optical element[J]. Applied Optics, 2006, 45(31):8136-8141.
    [2]
    JIA J, ZHOU C, SUN X, et al. Superresolution laser beam shaping[J]. Applied Optics,2004,43(10):2112-2117.
    [3]
    BOUROUIS R, AIT-AMEUR K, LADJOUZE H. Optimization of the Gaussian beam flattening using a phase-plate[J]. Journal of Modern Optics, 1997,44(7):1417-1427.
    [4]
    CORDINGLEY J. Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers[J]. Applied Optics, 1993, 32(14):2538-2542.
    [5]
    DONG M F, SONG X X, LI S. The designation and experiment of the DOE applied to shape the laser beam to square frame shape[J]. Laser Technology, 2005, 29(2):169-171(in Chinese).
    [6]
    HOFFNAGLE J A, JEFFERSON C M. Design and performance of a refractive optical system that converts a Gaussian to a flattop beam[J]. Applied Optics,2000,39(30):5488-5499.
    [7]
    HUANG Sh, DENG L M, YANG H, et al. Homogenization design of laser diode based on ZEMAX[J]. Laser Technology, 2014, 38(4):522-526(in Chinese).
    [8]
    AUERBACH J M, KARPENKO V P. Serrated-aperture apodizers for high-energy laser systems[J]. Applied Optics,1994,33(15):3179-3183.
    [9]
    LIANG J Y, KOHN R N, BECKER M F, et al. 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator[J]. Applied Optics, 2009, 48(10):1955-1962.
    [10]
    HUANG D J, FAN W, LIN Z Q. Spatial laser beam shaping using digital micromirror device[J]. Chinese Journal of Lasers, 2011, 38(5):0502008(in Chinese).
    [11]
    DU M, XING T W, YUAN J H. Application of micromirror array in beam shaping[J]. Infrared and Laser Engineering, 2014, 43(4):1210-1214(in Chinese).
    [12]
    CHEN H. Influence of beam quality on propagation and focus of laser beam and quality of laser materials processing[D].Beijing:Beijing University of Technology,2006:28-57(in Chinese).
    [13]
    PARTHA P M. Multispot point spread function for multiphoton fluorescence microscopy[J]. Review of Scientific Instruments, 2009, 80(9):096104.
    [14]
    DORRER C, ZUEGEL J D. Design and analysis of binary beam shapers using error diffusion[J]. Journal of the Optical Society of America,2007,B24(24):1268-1275.
    [15]
    FLOYD R W, STEINBERG L. An adaptive algorithm for spatial greyscale[J]. Proceeding of the Society of Information Display, 1976, 17:75-77.
  • Cited by

    Periodical cited type(14)

    1. 牛昊,王永丽,姜增璇,李川川,魏志鹏,宋国峰. 基于集成氮化硅超表面VCSEL的涡旋光输出. 发光学报. 2025(02): 326-333 .
    2. 张莉,孙俊. 基于几何相位的高透射型太赫兹超表面设计. 现代电子技术. 2024(03): 7-11 .
    3. 张莉,孙俊. 基于几何相位的超表面产生宽带太赫兹涡旋波束的设计. 激光杂志. 2024(06): 44-48 .
    4. 梁庆宣,尹浩宇,李赵辉,段玉冰,王昕,李涤尘. 超表面异质结构的熔融沉积复合成形工艺及其电磁伪装性能研究. 机械工程学报. 2022(03): 276-283 .
    5. 罗文峰,李新慧,吕淑媛,贾洁. 双波长偏振控制超表面透镜的设计. 西北工业大学学报. 2022(01): 215-221 .
    6. 罗蒙. 一种产生涡旋光束的勾型阵列超表面结构设计. 激光与光电子学进展. 2021(01): 152-157 .
    7. 刘嘉伟,聂仲泉. 紧聚焦的角向偏振艾里光束产生超分辨光针. 激光技术. 2021(03): 390-395 . 本站查看
    8. 黄晗,黄志高,曾永西. 基于锥形天线阵产生太赫兹伪贝塞尔波束. 三明学院学报. 2020(06): 56-62 .
    9. 茅晨曦,臧小飞,朱亦鸣. 太赫兹近场涡旋光束的干涉. 中国激光. 2019(01): 346-352 .
    10. 周璐,赵国忠,李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报. 2019(10): 297-304 .
    11. 马宇,张浩,刘婷,章海锋. 一种“风车”形单元平面反射阵列天线的设计. 南京师大学报(自然科学版). 2019(02): 81-86 .
    12. 章海锋. 3维函数光子晶体的特性研究. 激光技术. 2018(03): 318-324 . 本站查看
    13. 杨靖,章海锋,张浩,刘佳轩. 基于等离子体超材料的超宽带吸波体设计. 激光与光电子学进展. 2018(09): 346-354 .
    14. 李文煜,章海锋,刘婷,马宇. 一种波束扫描固态等离子体超表面的设计. 激光技术. 2018(06): 822-826 . 本站查看

    Other cited types(3)

Catalog

    Article views (3) PDF downloads (4) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return