Citation: | WANG Dandan, YU Shengfu, LIU Yi. Effect of laser power on performance of dissimilar joints between Cu-Ni coated low carbon steel and stainless steel[J]. LASER TECHNOLOGY, 2016, 40(6): 806-809. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.007 |
[1] |
BATAHGY E, MONEM A. Laser beam welding of austenitic stainless steels-similar butt and dissimilar lap joints[J]. INTECH Open Science Open Minds, 2012,11(5):93-116.
|
[2] |
GHAINI F M, HAMEDI M J, TORKAMANY M J, et al. Weld metal microstructural characteristics in pulsed Nd:YAG laser welding[J].Scripta Materialia, 2007, 56(11):955-958.
|
[3] |
YOU D Y, GAO X D. Research status and prospect of laser welding technology[J]. Welding Technology, 2008, 12(4):5-9.
|
[4] |
WANG J C. Development and expectation of laser welding technology[J]. Laser Technology, 2001,25(1):48-54(in Chinese).
|
[5] |
TORKAMANY M J, SABBAGHZADEH J, HAMEDI M J. Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels[J]. Materials Design, 2012, 34(2):666-672.
|
[6] |
ESFAHANI M N, COUPLAND J, MARIMUTHU S. Microstructure and mechanical properties of a laser welded low carbon-stainless steel joint[J]. Journal of Materials Processing Technology, 2014, 214(12):2941-2948.
|
[7] |
AAAUNCAO E, WILLIAMS S, YAPP D. Interaction time and beam diameter effects on the conduction mode limit[J]. Optics and Lasers in Engineering, 2012, 50(6):823-828(in Chinese).
|
[8] |
ZHANG B. Study on the technological properties and mechanical properties of laser spot welding of low carbon steel[D]. Harbin:Harbin Institute of Technology, 2007:231-273(in Chinese).
|
[9] |
TORAKMANY M J, HAMEDI M J, MALEK F, et al. The effect of process parameters on keyhole welding with a 400W Nd:YAG pulsed laser[J]. Journal of Physics, 2006, D39(21):45-63.
|
[10] |
AMERICAN WELDING SOCIETY.Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials[S]. Miami, USA:American Welding Society, 1997:D8.9M.
|
[11] |
MARASHI P, POURANVARI M, AMIRABDOLLAHIAN S, et al. Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels[J]. Materials Science and Engineering, 2008, A480(1):175-180.
|
[12] |
LIU S H. Laser manufacturing technology[M]. Wuhan:Huazhong University of Science Technology Press, 2011:113-116(in Chinese).
|
[13] |
KUO T Y, LIN H C. Effects of pulse level of Nd:YAG laser on tensile properties and formability of laser weldments in automotive aluminum alloys[J]. Materials Science and Engineering, 2006, A 416(1/2):281-289.
|
[14] |
ALIZADEH-SH M, FALSAFI F, MASOUMI M, et al. Laser spot welding of AISI 304L:metallurgical and mechanical properties[J]. Ironmaking Steelmaking, 2014, 41(3):161-165.
|
[15] |
LIAO Y C, YU M H. Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet[J]. Journal of Materials Processing Technology, 2007, 190(1):102-108.
|
[16] |
UI-HAMID A, TAWANCY H M, ABBAS N M. Failure of weld joints between carbon steel pipe and 304 stainless steel elbows[J]. Engineering Failure Analysis, 2005, 12(2):181-191.
|
[1] | LI Fengwu, ZUO Duluo, WANG Xinbing. Characteristics of discharge channels of air plasma induced by CO2 laser[J]. LASER TECHNOLOGY, 2017, 41(6): 831-835. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.013 |
[2] | CHEN Ziqi, WANG Xinbing, ZUO Duluo. Experimental research of CO2 laser-induced liquid droplet jet flow plasma[J]. LASER TECHNOLOGY, 2016, 40(6): 888-891. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.023 |
[3] | YANG Ruoqi, WANG Xinbing, LAN Hui. Study on expansion characteristics of tin plasma plume produced by CO2 laser and Nd:YAG laser[J]. LASER TECHNOLOGY, 2016, 40(2): 223-226. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.015 |
[4] | TANG Jian, ZUO Du-luo, YANG Chen-guang, CHENG Zu-hai. Spectroscopic diagnosis of air plasma induced by pulsed CO2 laser[J]. LASER TECHNOLOGY, 2013, 37(5): 636-641. DOI: 10.7510/jgjs.issn.1001-3806.2013.05.016 |
[5] | WU Tao, WANG Xin-bing, TANG Jian, RAO Zhi-ming, WANG Shao-yi. Analysis of the properties of CO2 laser-induced aluminum plasma at different ambient pressures[J]. LASER TECHNOLOGY, 2011, 35(6): 800-803. DOI: 10.3969/j.issn.1001-3806.2011.06.021 |
[6] | ZHU Xin-wang, WANG Xin-bing, FU Yan-feng, LU Yan-zhao, SHI Yu-hua. Research of collector mirrors of CO2 laser produced plasma EUV source[J]. LASER TECHNOLOGY, 2010, 34(6): 725-728. DOI: 10.3969/j.issn.1001-3806.2010.06.002 |
[7] | Bao Gang, Wang Cheng, Peng Yun, Chen Wuzu, Tian Zhiling. Effect of EM field on the plasma control during CO2 laser beam welding[J]. LASER TECHNOLOGY, 2002, 26(2): 81-83,93. |
[8] | Ren Deming, Hu Xiaoyong, Zhou Bo, Qu Yancheng, Liu Fengmei. The development of plasma shutter pulse-shaping technique for TEA CO2 laser[J]. LASER TECHNOLOGY, 2001, 25(6): 449-453. |
[9] | Tang Xiahui, Zhu Haihong, Zhu Guofu, Li Jiarong. Detection of laser-induced plasma for high-power laser beam welding[J]. LASER TECHNOLOGY, 1996, 20(5): 312-316. |
[10] | Tang Xiahui, Zhu Haihong, Zhu Guofu, Li Jiarong. Plasma control in high-power CO2 laser welding[J]. LASER TECHNOLOGY, 1995, 19(5): 314-316. |