Advanced Search
FENG Dong, ZENG Xiangui. Measurement of nonlinear refractive index of bulk bismuth telluride based on reflection z-scan[J]. LASER TECHNOLOGY, 2016, 40(3): 326-330. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.005
Citation: FENG Dong, ZENG Xiangui. Measurement of nonlinear refractive index of bulk bismuth telluride based on reflection z-scan[J]. LASER TECHNOLOGY, 2016, 40(3): 326-330. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.005

Measurement of nonlinear refractive index of bulk bismuth telluride based on reflection z-scan

More Information
  • Received Date: March 13, 2015
  • Revised Date: May 04, 2015
  • Published Date: May 24, 2016
  • In order to study nonlinear refractive index of bismuth telluride, a 3-D topological insulator, nonlinear refractive index of 800nm femtosecond pulse laser was measured by reflection z-scan method. After theoretical calculation and experimental data fitting, nonlinear refractive index of bismuth telluride crystal could reach the order of magnitude of 10-14m2/W, 105 times of that of quartz. Nonlinear refractive index decreased with the increase of incident power. Until peak intensity reached 85GW/cm2, nonlinear refractive index tended to be a constant. The results show that bismuth telluride is a remarkable nonlinear optical material which has huge potential in the application of all-optical signal processing and optical switching.
  • [1]
    MOORE J E. The birth of topological insulators[J]. Nature, 2010, 464(7286):194-198.
    [2]
    MOORE J. Topological insulators:the next generation[J]. Nature Physics, 2009, 5(6):378-380.
    [3]
    BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806):1757-1761.
    [4]
    ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):438-442.
    [5]
    BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9):611-622.
    [6]
    SUN Z, HASAN T, TORRISI F, et al. Graphene mode-locked ultrafast laser[J]. American Chemical Society Nano, 2010, 4(2):803-810.
    [7]
    ZHENG Z W, ZHAO C J, LU S B, et al. Microwave and optical saturable absorption in graphene[J]. Optics Express, 2012, 20(21):23201-23214.
    [8]
    ZHANG H, VIRALLY S, BAO Q, et al. z-scan measurement of the nonlinear refractive index of graphene[J]. Optics Letters, 2012, 37(11):1856-1858.
    [9]
    BERNARD F, ZHANG H, GORZA S P, et al. Towards mode-locked fiber laser using topological insulators[C]//Nonlinear Photonics. Washington DC, USA:The Optical Society of America, 2012:NTh1A.5.
    [10]
    ZHAO C J, ZOU Y H, CHEN Y, et al. Wavelength-tunable picosecond soliton fiber laser with topological insulator:Bi2Se3 as a mode locker[J]. Optics Express, 2012, 20(25):27888-27895.
    [11]
    LU S B, ZHAO C J, ZOU Y H, et al. Third order nonlinear optical property of Bi2Se3[J]. Optics Express, 2013, 21(2):2072-2082.
    [12]
    CHEN S Q, ZHAO C J, LI Y, et al. Broadband optical and microwave nonlinear response in topological insulator[J]. Optical Materials Express, 2014, 4(4):587-596.
    [13]
    LEE J, KOO J, CHI C, et al. All-fiberized, passively Q-switched 1.06m laser using a bulk-structured Bi2Te3 topological insulator[J]. Journal of Optics, 2014, 16(8):085203.
    [14]
    KOO J, LEE J, CHI C, et al. Passively Q-switched 1.56m all-fiberized laser based on evanescent field interaction with bulk-structured bismuth telluride topological insulator[J]. Journal of the Optical Society of America, 2014, B31(9):2157-2162.
    [15]
    LEE J, JUNG M, KOO J, et al. Passively Q-switched 1.89m fiber laser using a bulk-structured Bi2Te3 topological insulator[J]. IEEE Journal of Quantum Electronics, 2015, 21(1):1-6.
    [16]
    BORN M, WOLF E. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light[M]. Cambridge, U K:Cambridge University Press, 1999:167-175.
    [17]
    MARTINELLI M, GOMES L, HOROWICZ R J. Measurement of refractive nonlinearities in GaAs above bandgap energy[J]. Applied Optics, 2000, 39(33):6193-6196.
    [18]
    XIANG M, JIA Z, LV X. Reflection z-scan for measuring the nonlinear refractive index of porous silicon[J]. Optoelectronics Letters, 2010, 6(3):226-228.
    [19]
    DHEEPA J, SATHYAMOORTHY R, SUBBARAYAN A. Optical properties of thermally evaporated Bi2Te3 thin films[J]. Journal of Crystal Growth, 2005, 274(1):100-105.
    [20]
    CATUNDA T, CURY L A. Transverse self-phase modulation in ruby and GdAlO3:Cr3 crystals[J]. Journal of the Optical Society of America, 1990, B7(8):1445-1455.
    [21]
    HE W Q, GU C M, SHEN W Z. Direct evidence of Kerr-like nonlinearity by femtosecond z-scan technique[J]. Optics Express, 2006, 14(12):5476-5483.
    [22]
    DINU M, QUOCHI F, GARCIA H. Third-order nonlinearities in silicon at telecom wavelengths[J]. Applied Physics Letters, 2003, 82(18):2954-2956.

Catalog

    Article views (5) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return