Advanced Search
TIAN Jia, HU Jian, WANG Ke, WANG Hailin, ZHU Changhong, ZHU Guangzhi, QI Lijun, ZHU Xiao. Nonlinear analysis of thermal induced birefringence of YAG laser crystal[J]. LASER TECHNOLOGY, 2015, 39(4): 520-524. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.020
Citation: TIAN Jia, HU Jian, WANG Ke, WANG Hailin, ZHU Changhong, ZHU Guangzhi, QI Lijun, ZHU Xiao. Nonlinear analysis of thermal induced birefringence of YAG laser crystal[J]. LASER TECHNOLOGY, 2015, 39(4): 520-524. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.020

Nonlinear analysis of thermal induced birefringence of YAG laser crystal

More Information
  • Received Date: June 08, 2014
  • Revised Date: July 16, 2014
  • Published Date: July 24, 2015
  • To overcome the shortage of mismatch of the calculated value and the measured value of thermal induced birefringence and thermal focal length when applying linear heat conduction model to describe a laser crystal operating in high power, based on nonlinear heat conduction model analysis, the distribution of the thermal induced birefringence ellipse and the radial or tangential thermal focal length in a Nd:YAG laser crystal of common [111]-cut were analyzed. The average thermal focal length data and rotated interference pattern of linearly polarized light were measured. The experimental results fit the theoretical analysis. The results show that nonlinear model provides more realistic and more general description for an Nd:YAG laser crystal in [111]-cut. The result is helpful for the design of radial or tangential polarized high power solid-state lasers.
  • [1]
    TNERMANN H, PUNCKEN O, WEBLS P, et al. Linearly polarized single-mode Nd:YAG oscillators using
    [3]
    -cut crystals[J]. Optics Express, 2011, 19(14): 12992-12999.
    [4]
    GAO J C, ZHU C H, LI Z J. Study on the thermal effect and the optical pump limit about solid state laser medium[J]. Laser Technology, 2004, 28(3): 271-274 (in Chinese).
    [5]
    YU Z S, LIU J, LIU J, et al. Study of the distributed thermal lens of LD end pumped rectangular gain[J]. Optics Express, 2013, 21(20): 23197-23205.
    [6]
    LUMER Y, MOSHE I. Radial and azimuthal beam parameters[J]. Optics Letters, 2009, 34(3):265-267.
    [7]
    MAcHAVARIANI G, LUMER Y, MOSHE I, et al. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes[J]. Applied Optics, 2007, 46(16): 3304-3310.
    [8]
    MOSHE I, JACKEL S. Influence of birefringence-induced bifocusing on optical beams[J]. Journal of the Optical Society of America,2005, B22(6): 1228-1235.
    [9]
    ZVEREV G M. Materials for use in quantum electronics-yttrium-aluminum garnet, lithium niobate[J]. Akademiia Nauk SSSR Izvestiia Seriia Fizicheskaia, 1980, 44(1): 1614-1621.
    [10]
    ROZANOV A G. Nonlinear model of thermal effects in YAG:Nd laser crystals[J]. Soviet Journal of Quantum Electronics, 1991, 21(10): 1074-1076.
    [11]
    PUNCKEN O, TVNERMANN H, MOREHEAD J J, et al. Intrinsic reduction of the depolarization in Nd:YAG crystals[J]. Optics Express, 2010, 18(19): 20461-20474.
    [12]
    LUMER Y, MOSHE I, JACKEL S, et al. Depolarization induced by pump edge effects in high average power laser rods[J]. Journal of the Optical Society of America, 2010, B27(1): 38-44.
    [13]
    KOECHNER W. Solid-state laser engineering[M].5th ed. Beijing: Science Press, 2002: 356-370 (in Chinese).
    [14]
    L Q, WITTROCK U, DONG S. Photoelastic effects in Nd:YAG rod and slab lasers[J]. Optics Laser Technology, 1995, 27(2): 95-101.
    [15]
    SHOJI I, TAIRA T. Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal[J]. Applied Physics Letters, 2002, 80(17): 3048-3050.
    [16]
    LUMER Y, MOSHE I, HOROVITZ Z, et al. Thermally induced birefringence in nonsymmetrically pumped laser rods and its implications for attainment of good beam quality in high-power, radially polarized lasers[J]. Applied Optics, 2008, 47(21): 3886-3891.
    [17]
    OU Q F, FENG G Y, LIU D P, et al. Simulation and experimental study on thermal effects of Nd:YAG lasers[J]. Laser Technology, 2002, 26(1): 15-16 (in Chinese).
  • Related Articles

    [1]CHEN Xunlin, YANG Yujun. Fast template matching for laser cutting based on niche genetic algorithm[J]. LASER TECHNOLOGY, 2019, 43(1): 125-130. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.025
    [2]XU Benzhi, QI Lijun, WANG Wei, ZHU Xiao, WANG Hailin, ZHU Guangzhi, ZHU Changhong. Study on the optimum matching parameters of the combined laser drilling[J]. LASER TECHNOLOGY, 2018, 42(1): 5-10. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.002
    [3]XIONG Cuixiu. Effect of dispersion on longitudinal mode interval of a Fabry-Perot interferometer[J]. LASER TECHNOLOGY, 2015, 39(5): 637-641. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.011
    [4]ZHAO Yu, MA Kezhen, YANG Dechao, GUO Zebin, ZHANG Wendong, XUE Chenyang, YAN Shubin. Research of vernier effect of ring resonator in sensor fields[J]. LASER TECHNOLOGY, 2014, 38(3): 293-296. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.002
    [5]PU Liang, YE Yu-tang, WU Yun-feng, WANG Yu-lin, LIU Li. Laser interferometer signal processing based on empirical mode decomposition[J]. LASER TECHNOLOGY, 2011, 35(3): 299-301,311. DOI: 10.3969/j.issn.1001-3806.2011.03.003
    [6]HAN Yong-fei, CHEN Zhen-qiang, LI Jing-zhao, LIN Lang, LI Zhen, WANG Guo-fu. Research of noncritical phase-matching of BIBO crystal[J]. LASER TECHNOLOGY, 2009, 33(5): 466-469. DOI: 10.3969/j.issn.1001-3806.2009.05.006
    [7]LI Mei-ju, SU Xian-yu. Stereo matching by means of digital speckle[J]. LASER TECHNOLOGY, 2004, 28(5): 550-553.
    [8]Chen Houdao, Zhou Gang, Wang Congjun, Huang Shuhuai. An algorithm for laser stripe matching based on the epipolar constraint[J]. LASER TECHNOLOGY, 2003, 27(6): 584-587.
    [9]Li Zhengjia, Xia Wenjian, Zhu Changhong, Ying Huashan, Qiu Junjin. Study on the dynamic mode matching of multirod solid state lasers[J]. LASER TECHNOLOGY, 1998, 22(5): 284-287.
    [10]Zhang Zhi-jun, Wu Zheng-de, Fan Yong, Tang Xiao-hong. Matching technology for high speed laser diode[J]. LASER TECHNOLOGY, 1995, 19(4): 239-243.
  • Cited by

    Periodical cited type(3)

    1. 聂鹏程,余先伦,刘嘉伟,关莉珍,王雨行. 切趾函数光纤布拉格光栅的光谱特性研究. 激光杂志. 2023(04): 114-118 .
    2. 唐健峰,季树滨,车雅良,张灵艺,张引发. 光纤布拉格光栅制作中心波长控制技术. 激光与光电子学进展. 2017(07): 123-127 .
    3. 李凯,辛璟焘,夏嘉斌,祝连庆. 基于电弧等离子体的光纤光栅快速退火的研究. 激光技术. 2017(05): 649-653 . 本站查看

    Other cited types(1)

Catalog

    Article views (4) PDF downloads (5) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return