Advanced Search
ZHENG Caiying, GUO Zhonghua, JIN Ling. Measurement of total viable count on chilled mutton surface based on hyperspectral imaging technique[J]. LASER TECHNOLOGY, 2015, 39(2): 284-288. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.029
Citation: ZHENG Caiying, GUO Zhonghua, JIN Ling. Measurement of total viable count on chilled mutton surface based on hyperspectral imaging technique[J]. LASER TECHNOLOGY, 2015, 39(2): 284-288. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.029

Measurement of total viable count on chilled mutton surface based on hyperspectral imaging technique

More Information
  • Received Date: February 19, 2014
  • Revised Date: May 03, 2014
  • Published Date: March 24, 2015
  • In order to obtain non-destructive assessment of total viable count (TVC) on chilled mutton surface, different kinds of recognition models were established based on different wavelength range hyperspectral imaging systems, then theoretical analysis and experiments were carried out. The hyperspectral imaging information of chilled mutton samples were collected in the region of 400nm~1100nm and 900nm~1700nm. The predictive models were established by partial least squares (PLS) and artificial neural network (back propagation artificial neural network and radial basis function artificial neural network (RBF-ANN)). The results show that the model which is on the basis of artificial neural network is better than PLS to predict TVC of chilled mutton surface. The best prediction result is based on the RBF-ANN model, the correlation coefficient and the root mean square error of prediction are 0.9872, 0.9988 and 0.8210, 0.2507 in the region of 400nm~1100nm and 900nm~1700nm. Meanwhile, the region of 900nm~1700nm is the best modeling wavelength. Therefore, hyperspecctral imaging technique can be used for the non-destructive detection of total viable count on chilled mutton surface.
  • [1]
    WU D, SHAO K , DA L, et al. Current production and research development of foreign and domestic meat goats industry [J].Animal Husbandry and Feed Science, 2010, 31(6):124-126(in Chinese).
    [2]
    ZHOU J, YIN J J, HOU Y Z, et al. Development of methods for rapid detection technology of total bacteria in food[J]. Food Research and Development, 2010, 31(12):276-280(in Chinese).
    [3]
    TAO F F ,WANG W, LI Y Y, et al. A rapid nondestructive measurement method for assessing the total plate count on chilled pork surface[J]. Spectroscopy and Spectral Analysis, 2010, 30(12):3405-3409(in Chinese).
    [4]
    ZHANG Y,CHENG Y,YAN Y T, et al. Study on characteristics of fluorescent spectra of several kinds of heated common edible oil [J].Laser Technology, 2013,37(1):109-113(in Chinese).
    [5]
    ZHU R G, MA B X , GAO Z J, et al. Research progress in nondestructive detection of livestock product quality based on hyperspectral imaging[J]. Laser & Infrared, 2011, 41(10):1067-1071(in Chinese).
    [6]
    PARK B, LAWRENCE K C, WINDHAM W R. Performance of hyperspectral imaging system for poultry surface fecal contaminant detection [J]. Journal of Food Engineering, 2006, 75(3): 340-348.
    [7]
    CHEN Q S, ZHANG Y H, WAN X M, et al. Study on detection of pork tenderness using hyperspectral imaging technique [J]. Acta Optica Sinica, 2010,30(9):2602-2607(in Chinese).
    [8]
    QIAO J, NGADI M, WANG N, et al. Pork quality and marbling level assessment using ahyperspectral imaging system [J]. Journal of Food Engineering, 2007, 83(1): 10-16.
    [9]
    WU J H, PENG Y K, JIANG F C, et al. Hyperspectral scattering profiles for prediction of beef tenderness[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(12): 135-138(in Chinese).
    [10]
    PENG Y K, ZHANG J, WANG W, et al. Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles [J]. Journal of Food Engineering, 2011, 102(2): 163-169.
    [11]
    WANG W, PENG Y K, ZHANG X L, et al. Study on modeling method of total viable count of fresh pork meat based on hyperspectral imaging system.Spectroscopy and Spectral Analysis, 2010, 30(2): 411-415(in Chinese).
    [12]
    WEI B L, CHEN G X, XU J C, et al. Recognition of alcohol-free beer by fluorescent spectroscopy and probabilistic neural network[J]. Laser Technology, 2010, 34(6):794-797(in Chinese).
    [13]
    XUE L, LI J, LIU M H. Detecting pesticide residue on navel orange surface by using hyperspectral imaging [J].Acta Optica Sinica, 2008, 28(12):2277-2280(in Chinese).
    [14]
    GAMAL E, SUN D W, PAUL A. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef[J]. Journal of Food Engineering, 2012, 110(1):127-140.
    [15]
    BARBIN D F, ELMASRY G, SUN D W, et al. Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging[J]. Innovative Food Science and Emerging Technologies, 2013,17(1):180-191.
    [16]
    FU X B. Short-wave near infrared detection technology under complex conditions [D].Changchun:Jinlin University, 2012:62-69(in Chinese).
  • Cited by

    Periodical cited type(11)

    1. 赵婕秀,董庆利,陈培琴,王真,曹成,牛洪梅,潘磊庆,张希斌,李代禧. 高光谱成像技术在动物源性食品微生物污染快速检测中的应用进展. 食品工业科技. 2022(07): 467-473 .
    2. 姜莎,闫彩霞,范鑫,张彦斌,张宏博. 无损检测技术在羊肉品质分析中的研究进展. 肉类工业. 2021(02): 38-44 .
    3. 王可,王慧琴,殷颖,毛力,张毅. 基于光谱重建技术的壁画颜色复原与评价. 激光技术. 2019(02): 280-285 . 本站查看
    4. 王彩霞,王松磊,贺晓光,董欢. 基于可见/近红外高光谱成像技术的牛肉品种鉴别. 食品工业科技. 2019(12): 241-247 .
    5. 孟庆龙,张艳,尚静. 光纤光谱结合模式识别无损检测苹果表面疤痕. 激光技术. 2019(05): 86-90 . 本站查看
    6. 辛世华,韩小珍,王彩霞. 基于高光谱成像技术对牛肉品种判别的研究. 食品研究与开发. 2019(20): 190-194 .
    7. 曾言,曾延安,张南洋生,赵宇,龙建明. 一种改善成像光谱仪光谱检测能力的新方法. 激光技术. 2018(02): 196-200 . 本站查看
    8. 魏菁,郭中华,徐静. 基于高光谱和极限学习机的冷却羊肉表面细菌总数检测. 江苏农业科学. 2018(24): 211-214 .
    9. 杜家蒙,陈国庆,马超群,奚留华,朱纯,赵金辰,顾颂. 应用3维同步荧光光谱测定胭脂红浓度. 激光技术. 2017(04): 503-506 . 本站查看
    10. 杨灵,吴霆,蔡旭灿. 光谱技术在肉类检测中的应用及研究进展. 广东农业科学. 2016(05): 162-168 .
    11. 王龙,邱园园,李小波. 基于高光谱成像技术的牛羊肉品质无损检测研究进展. 新疆农垦科技. 2015(06): 70-72 .

    Other cited types(14)

Catalog

    Article views (7) PDF downloads (7) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return