Advanced Search
QIAN Yan, LIU Min, YANG Jing, MA Yunhua. Analysis of coupling characteristics of square five-core photonic crystal fibers[J]. LASER TECHNOLOGY, 2014, 38(4): 455-458. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.005
Citation: QIAN Yan, LIU Min, YANG Jing, MA Yunhua. Analysis of coupling characteristics of square five-core photonic crystal fibers[J]. LASER TECHNOLOGY, 2014, 38(4): 455-458. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.005

Analysis of coupling characteristics of square five-core photonic crystal fibers

More Information
  • Received Date: September 04, 2013
  • Revised Date: October 10, 2013
  • Published Date: July 24, 2014
  • To study the influence of the structure parameters of a square five-core photonic crystal fiber (PCF) on coupling characteristics, according to the characteristics of its five super-modes, a method to calculate the coupling length of the PCF was given. The effect of the wavelength and the structure parameters on the coupling characteristics of the PCF was numerically studied in detail with the finite element method. The results show that the coupling length increases with the increase of the core-to-core distance, air-filling ratio, core refractive index and core diameter. However, the coupling length decreases with the increase of the wavelength. The results will provide the theoretical foundations for the design of directional couplers based on five-core PCFs.
  • [1]
    SAITOH K, KOSHIBA M. Numerical modeling of photonic crystal fibers[J]. Journal of Lightwave Technology, 2005, 23(11): 3580-3590.
    [2]
    JAN D, LIU M, HE D, et al. Research of photonic crystal fiber with high nonlinear flattened dispersion property[J]. Laser Technology,2013, 37(2):187-190(in Chinese).
    [3]
    LIAO Zh Y, LIU M, QIAN Y, et al. Octagonal dispersion compensation fiber[J]. Laser Technology,2013, 37(4):506-510(in Chinese).
    [4]
    LING F, GAN X S,GU M. Nonlinear optical microscope based on double-clad photonic crystal fibers[J]. Optics Express, 2005, 13(14):5528-5534.
    [5]
    LIMPERT J, SCHREIBER T, NOLTE S, et al. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Optics Express, 2003, 11(7): 818-823.
    [6]
    BERGH R A, KOTLER G, SHAW H J. Single-mode fibre optic directional coupler[J]. Electronics Letters, 1980, 16(7): 260-261.
    [7]
    YANG S. Directional pattern of a cross vector sensor array [J]. The Journal of the Acoustical Society of America, 2012, 131(4): 3484-3489.
    [8]
    WADSWORTH W, PERCIVAL R, BOUWMANS G, et al. High power air-clad photonic crystal fibre laser[J]. Optics Express, 2003, 11(1): 48-53.
    [9]
    LIU M, CHIANG K S. Propagationof ultrashortpulsesin a nonlinear two-core photonic crystal fiber[J]. Applied Physics, 2010, B98(4): 815-820.
    [10]
    LIU M, CHIANG K S. Two-core photonic crystal fiber with zero intermodal dispersion[J]. Optics Communications, 2012,293(15):49-53.
    [11]
    LI D, LIU M, JIAN D, et al.Study on characteristics of highly birefringent dual-core photonic crystal fibers [J].Chinese Journal of Lasers, 2012,39(4):106-110(in Chinese).
    [12]
    LIU M, CHIANG K S. Nonlinear switching of ultrashort pulses in multicore fibers[J]. Quantum Electronics, 2011, 47(12): 1499-1505(in Chinese).
    [13]
    YI Ch Sh, ZHANG P Q,DAI Sh X, et al. Research progress of large-mode area photonic crystal fibers[J].Laser Optoelectronics Progress,2012(10):1-11(in Chinese).
    [14]
    CHEO P K, KING G G, HUO Y. Recent advances in high-power and high-energy multicore fiber lasers[J].Proceedings of the SPIE, 2004,5335:106-115.
    [15]
    FANG X H, CHAI L, HU M L, et al. Numerical analysis for structure optimization of seven-core photonic crystal fibers[J].Acta Physica Sinica,2009,58(4):2495-2500 (in Chinese).
    [16]
    MA L F, LIU M, LI D, et al. A kind of hollow dual-core photonic crystal fiber with zero inter-modal dispersion[J].Chinese Journal of Lasers, 2012, 39(8): 129-134 (in Chinese).
    [17]
    GENG P Ch. Research on seven-core and bandgap Yb-doped photonic crystal fibers.Qinhuangdao:Yanshan University,2010:21-25 (in Chinese).
  • Cited by

    Periodical cited type(7)

    1. 孙佳鑫,钱传鹏,徐作冬,张检民,叶锡生. 长波量子阱红外探测器激光辐照损伤脉宽效应数值模拟. 激光与光电子学进展. 2024(21): 290-297 .
    2. 胡蔚敏,王小军,田昌勇,杨晶,刘可,彭钦军. 脉宽对中红外激光带内损伤HgCdTe材料的影响. 强激光与粒子束. 2022(01): 130-137 .
    3. 王云萍,侯军燕,袁春,康文运,陈安民,张鲁薇. 飞秒激光对多光谱滤波片的损伤阈值研究. 激光技术. 2022(05): 697-701 . 本站查看
    4. 李玉瑶,王菲,孙同同. 薄膜激光损伤阈值标定技术. 激光技术. 2021(06): 729-734 . 本站查看
    5. 白凤凤,武桂芬. 光学薄膜激光损伤阈值的智能检测研究. 激光杂志. 2020(02): 171-175 .
    6. 周冰,贺宣,刘贺雄,李秉璇,张炎. 激光辐照非制冷微测辐射热计的理论研究. 激光技术. 2020(04): 411-417 . 本站查看
    7. 任晓东,雷武虎,曾凌清,王勇. 基于相对运动的脉冲激光辐照探测器热效应数值分析. 光子学报. 2019(01): 105-111 .

    Other cited types(2)

Catalog

    Article views (12) PDF downloads (15) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return