Advanced Search
CHEN Kai, ZHU Dongxu, ZHANG Pingcai. Mode analysis of laser resonator based on finite element matrix[J]. LASER TECHNOLOGY, 2014, 38(3): 352-356. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.014
Citation: CHEN Kai, ZHU Dongxu, ZHANG Pingcai. Mode analysis of laser resonator based on finite element matrix[J]. LASER TECHNOLOGY, 2014, 38(3): 352-356. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.014

Mode analysis of laser resonator based on finite element matrix

More Information
  • Received Date: April 14, 2013
  • Revised Date: August 16, 2013
  • Published Date: May 24, 2014
  • In order to study the mode distribution in a laser resonator, a circular mirror resonator was analyzed based on finite element matrix and the feasibility and effectiveness of this method was verified. On the basis of the study, the rational division of the cavity mirror was studied. After fitting the relationship between the relative error and the fine extent of division elements, the reasonable number of elements was obtained. The results conformed with the actual calculation and analysis well. The results show that this method makes the mode analysis of a laser resonator more accurately and conveniently.
  • [1]
    BOYD G D, KOGELNIK H. Generalized confocal resonator theory[J]. Bell System Technical Journal, 1962, 41(4): 1347-1369.
    [2]
    GORDON J P, KOGELNIK H. Equivalence relations among spherical mirror optical resonators[J]. Bell System Technical Journal, 1964, 43(6): 2873-2886.
    [3]
    FLAMMER C. Spheroidal wave functions[M]. Stanford,USA:Stanford University Press, 1957:251-273.
    [4]
    HEURTLEY J C, STREIFER W. Optical resonator modes-circular reflectors of spherical curvature[J]. Journal of the Optical Society of America, 1965, 55(11): 1472-1479.
    [5]
    FOX A G, LI T. Resonant modes in a maser interferometer[J]. Bell System Technical Journal, 1961, 40(2): 453-488.
    [6]
    SIEGMAN A E, MILLER H Y. Unstable optical resonator loss calculations using the prony method[J]. Applied Optics, 1970, 9(12): 2729-2736.
    [7]
    QIN Y X, TANG X H, ZHONG R T, et al. Study on mode calculation of transmission matrix for laser resonator[J]. Chinese Journal of Lasers, 2008, 35(10): 1463-1468(in Chinese).
    [8]
    YONG F Q, WANG Y Q. Numerical matrix method for calculation of resonator mode[J]. Optics & Optoelectronic Technology, 2005, 3(5): 40-42.
    [9]
    SIEGMAN A E, SZIKLAS E A. Mode calculations in unstable resonators with flowing saturable gain.Ⅰ.Hermite-Gaussian expansion[J]. Applied Optics, 1974, 13(12): 2775-2791.
    [10]
    ZHUANG G L, DING T Q. A model for numerical analysis of cavity-modes and far-fields of circular-hole and ring-coupling laser resonators [J]. Laser Journal, 1987, 8(3): 188-192(in Chinese).
    [11]
    SZIKLAS E A, SIEGMAN A E. Mode calculations in unstable resonators with flowing saturable gain.Ⅱ.Fast Fourier transform method[J]. Applied Optics, 1975, 14(8): 1874-1889.
    [12]
    LIU Z Y, WU X Y, FAN D Y. Collins formula in frequency-domain and fractional Fourier transform[J]. Optics Communications, 1998, 155(1/3):7-11.
    [13]
    CHEN J B. Laser principle and application[M]. Beijing: Electronic Industry Press, 2004: 261-267(in Chinese).
    [14]
    CHENG Y Y, WANG Y Q, HU J. A novel eigenvector method for calculation of optical resonator modes and beam propagation [J]. Acta Physica Sinica, 2004, 53(8): 2576-2580(in Chin-ese).
    [15]
    GAO Zh H. Wave pattern property of self-reproductive mode in laser resonator [J]. Acta Photonica Sinica, 2000, 29(8): 726-729(in Chinese).
    [16]
    HELFERT S F, PREGLA R. A finite difference beam propagation algorithm based on generalized transmission line equations[J]. Optical and Quantum Electronics, 2000, 32(6/8): 681-690.
    [17]
    STOFFER R, HOEKSTRA H J W M. Efficient interface conditions based on a 5-point finite difference operator[J]. Optical and Quantum Electronics, 1998, 30(5/6): 375-383.
    [18]
    VASSALLO C. 1993-1995 optical mode solvers[J]. Optical and Quantum Electronics, 1997, 29(2): 95-114.
    [19]
    POLYCHRONOPOULOS S J, ATHANASOULIAS G B, UZUNOGLU N K. Advanced mode solver using an integral equation technique and entire domain plane wave basis functions[J]. Optical and Quantum Electronics, 1997, 29(2):127-137.
    [20]
    SELLERI S, VINCETTI L, CUCINOTTA A, et al. Complex FEM modal solver of optical waveguides with PML boundary conditions[J]. Optical and Quantum Electronics, 2001, 33(4): 359-371.
  • Related Articles

    [1]NING Guiyi, FU Gui, SHI Meng, FU Yongdong, MA Rende, SU Fufang. Fabrication of optical fiber U-shaped microstructure by femtosecond laser and its application in refractive index sensing[J]. LASER TECHNOLOGY, 2017, 41(6): 916-920. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.029
    [2]QUE Ruyue, LIU Yi, SUN Huihui, QU Shiliang. Refractive index sensor based on F-P interferometer cavity in optical fiber with double-openings[J]. LASER TECHNOLOGY, 2014, 38(6): 780-784. DOI: 10.7510/jgjs.issn.1001-3806.2014.06.012
    [3]YU Wenfang, HUANG Zuohua, ZHOU Jinzhao, LI Huaxin. Measurement of the refractive indexes of glacial acetic acid and alcohol by means of total reflection[J]. LASER TECHNOLOGY, 2014, 38(2): 161-164. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.004
    [4]GUO Zeqin, SHI Yanchao, ZHAO Peixi, HU Bitao. Measurement of refractive index of K9 glass with the third-order harmonic method[J]. LASER TECHNOLOGY, 2014, 38(1): 128-131. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.028
    [5]PAN Zhi-yong, REN Jun-jiang, HUANG Jian-ping, HE Yao-ji, GU Shao-yi, XING Mei-shu. A double clad Yb-doped fiber in a new refractive index profile[J]. LASER TECHNOLOGY, 2009, 33(5): 558-560. DOI: 10.3969/j.issn.1001-3806.2009.05.033
    [6]LI Guo-liang, SONG Lian-ke, HAO Dian-zhong, ZHOU Wen-ping, FAN Kai-min. Sensitivity of rhomb-type phase retarders to the input angle[J]. LASER TECHNOLOGY, 2008, 32(2): 157-158,162.
    [7]FENG Wei-wei, SONG Lian-ke, CHEN Li-gang. The study of the relation between circularly polarized light’s refractive rate and wavelength[J]. LASER TECHNOLOGY, 2004, 28(6): 639-640,644.
    [8]Hao Dianzhong, Wu Fuquan, Kong Weijin. Measurement of refractive index of crystals with interferometry[J]. LASER TECHNOLOGY, 2003, 27(5): 407-408.
    [9]Wang Xia, Wu Fuquan, Shao Weidong. A fresnel rhomb type phase retarder insensitive to the incident angle[J]. LASER TECHNOLOGY, 2000, 24(1): 27-30.
    [10]Xu Hao, Shen Hongyuan, Zeng Zhengdong. Expressions of thermal refractive index coefficients for Ti:Mg:LiNbO3 crystal[J]. LASER TECHNOLOGY, 1995, 19(1): 19-25.

Catalog

    Article views (4) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return