Advanced Search
XU Baiqiang, LIU Hongkai, XU Guidong, XU Chenguang, LI Junmin. Mixed stress-displacement finite element method for laser-generated ultrasound[J]. LASER TECHNOLOGY, 2014, 38(2): 230-235. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.018
Citation: XU Baiqiang, LIU Hongkai, XU Guidong, XU Chenguang, LI Junmin. Mixed stress-displacement finite element method for laser-generated ultrasound[J]. LASER TECHNOLOGY, 2014, 38(2): 230-235. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.018

Mixed stress-displacement finite element method for laser-generated ultrasound

More Information
  • Received Date: April 10, 2013
  • Revised Date: April 22, 2013
  • Published Date: February 24, 2014
  • In order to study the generation and propagation of laser-generated ultrasound in isotropic semi-infinite aluminum material, a laser-generated ultrasound in an arbitrary elastic semi-infinite medium model was established by using mixed stress-displacement finite element method and perfectly matched layer(PML). The transient wave snapshots and surface normal displacement waveforms in semi-infinite aluminum materials were obtained. The surface normal displacement waveforms were compared with the same geometrical finite element model. The results show that the mixed stress-displacement finite element method can effectively eliminate reflection waves from truncated boundary, and simulate the generation and propagation of ultrasound in semi-infinite solid material accurately. The simulation results provide an effective method for research of the laser-generated ultrasound waves in micro-nanostructure by picosecond or femtosecond laser irradiation.
  • [1]
    ROSSIGNOL C, PERRIN B, LABORDE S, et al. Nondestructive evaluation of micrometric diamond films with an interferometric picosecond ultrasonics technique[J]. Journal of Applied Physics, 2004, 95(8): 4157-4162.
    [2]
    KUNDU T. Ultrasonic nondestructive evaluation:engineering and baiological material characterization[M].Boca Raton,Florida,USA:CRC Press,2004: 435-494.
    [3]
    DAI Y, XU B Q, LOU Y, et al. Finite element modeling of the interaction of laser-generated ultrasound with a surface-breaking notch in an elastic plate[J]. Optics & Laser Technology, 2010,42(8):693-697.
    [4]
    SOHN Y, KRISHNASWAMY S. Scaning laser line source technique using monopolar Rayleigh waves[J]. American Institute of Physics, 2004, 700 (1): 278-285.
    [5]
    LIU J S, XU Z H, GU G Q. Numerical study on improvement of signal-to-noise ratio of surface acoustic waves based on laser array[J]. Laser Technology, 2011, 35(3): 403-406(in Chinese).
    [6]
    SUN H X, XU B Q. Numerical analysis of laser-generated lamb wave by finite element method in time and frequency domain[J]. Chinese Journal of Lasers, 2010, 37(2):537-542(in chinese).
    [7]
    JOHNSON C. Numerical solution of partial differential equations by the finite element methods[M]. New York,USA:Cambridge University Press, 1987: 14-48.
    [8]
    XU B Q, SHEN Z H, WANG J J, et al. Thermoelastic finite element modeling of laser generation ultrasound[J]. Journal of Applied Physics, 2006, 99(3):033508.
    [9]
    GIVOLI D, KELLER J B. Non-reflecting boundary conditions for elastic waves[J]. Wave Motion, 1990, 12(3): 261-279.
    [10]
    BASU U, CHOPRA A K. Perfectly matched layers for transient elastodynamics of unbounded domains[J]. International Journal for Numerical Methods in Engineering, 2004, 59(8): 1039-1074.
    [11]
    BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114 (2): 185-200.
    [12]
    FESTA G, NIELSEN S. PML absorbing boundaries[J]. Bulletin of the Seismological Society of America Definition,2003, 93 (2):891-903.
    [13]
    KUCUKCOBAN S, KALLIVOKAS L F. Mixed perfectly matched layers for direct transient analysis in 2-D elastic heterogeneous media[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(1/4):57-76.
    [14]
    XU B Q, SHEN Z H, NI X W, et al. Numerical simulation of laser-generated ultrasound by the finite element method[J]. Journal of Applied Physics, 2004, 95(4):2116-2122.
    [15]
    DOYLE P A, SCALA C M. Near-field ultrasonic Rayleigh waves from a laser line source[J]. Ultrasonics, 1996, 34(1):1-8.
  • Cited by

    Periodical cited type(7)

    1. 刘宣呈,陈根余,操坤,曹明月,梅枫. 成形砂轮激光修整的多轮廓图像合成检测方法. 激光技术. 2024(03): 395-404 . 本站查看
    2. 何易德,朱斌,姜湖海,刘书信,李黎明,胡绍云. 红外图像多尺度统计和应用先验去模糊模型. 激光技术. 2023(03): 360-365 . 本站查看
    3. 何易德,朱斌,司晨,毛锐. 基于红外视景仿真技术的导向滤波算法. 激光技术. 2021(02): 233-239 . 本站查看
    4. 朱金辉,张宝华,谷宇,李建军,张明. 基于双邻域对比度的红外小目标检测算法. 激光技术. 2021(06): 794-798 . 本站查看
    5. 王宁,周铭,杜庆磊,王冰. 一种红外图像快速目标检测方法. 弹箭与制导学报. 2020(04): 24-28+33 .
    6. 刘晓玲,牛海春,宋海燕,秦富贞. 复杂环境下弱信号中的红外小目标自动检测. 激光杂志. 2020(10): 82-86 .
    7. 王宁,周铭,杜庆磊,王冰. 基于Otsu准则的红外图像快速分割算法. 空军预警学院学报. 2019(02): 88-92 .

    Other cited types(4)

Catalog

    Article views (5) PDF downloads (8) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return